|
- # -*- coding: utf-8 -*-
- import sys
- from json import dumps, loads
- from traceback import format_exc
-
- import cv2
- from loguru import logger
-
- from common.Constant import COLOR
- from enums.BaiduSdkEnum import VehicleEnum
- from enums.ExceptionEnum import ExceptionType
- from enums.ModelTypeEnum2 import ModelType2, BAIDU_MODEL_TARGET_CONFIG2
- from exception.CustomerException import ServiceException
- from util.ImgBaiduSdk import AipBodyAnalysisClient, AipImageClassifyClient
- from util.PlotsUtils import get_label_arrays
- from util.TorchUtils import select_device
- import time
- import torch
- import tensorrt as trt
-
- sys.path.extend(['..', '../AIlib2'])
- from AI import AI_process, get_postProcess_para, get_postProcess_para_dic, AI_det_track, AI_det_track_batch, AI_det_track_batch_N
- from stdc import stdcModel
- from utilsK.jkmUtils import pre_process, post_process, get_return_data
- from obbUtils.shipUtils import OBB_infer, OBB_tracker, draw_obb, OBB_tracker_batch
- from obbUtils.load_obb_model import load_model_decoder_OBB
- from trackUtils.sort import Sort
- from trackUtils.sort_obb import OBB_Sort
- from DMPR import DMPRModel
-
- FONT_PATH = "../AIlib2/conf/platech.ttf"
-
-
- class Model:
- __slots__ = "model_conf"
-
- def __init__(self, device, allowedList=None, requestId=None, modeType=None, gpu_name=None, base_dir=None, env=None):
- try:
- logger.info("########################加载{}########################, requestId:{}", modeType.value[2],
- requestId)
- par = modeType.value[4](str(device), gpu_name)
- trackPar = par['trackPar']
- names = par['labelnames']
- detPostPar = par['postFile']
- rainbows = detPostPar["rainbows"]
- #第一步加载模型
- modelList=[ modelPar['model'](weights=modelPar['weight'],par=modelPar['par']) for modelPar in par['models'] ]
- #第二步准备跟踪参数
- trackPar=par['trackPar']
- sort_tracker = Sort(max_age=trackPar['sort_max_age'],
- min_hits=trackPar['sort_min_hits'],
- iou_threshold=trackPar['sort_iou_thresh'])
- postProcess = par['postProcess']
- model_param = {
- "modelList": modelList,
- "postProcess": postProcess,
- "sort_tracker": sort_tracker,
- "trackPar": trackPar,
- }
- self.model_conf = (modeType, model_param, allowedList, names, rainbows)
- except Exception:
- logger.error("模型加载异常:{}, requestId:{}", format_exc(), requestId)
- raise ServiceException(ExceptionType.MODEL_LOADING_EXCEPTION.value[0],
- ExceptionType.MODEL_LOADING_EXCEPTION.value[1])
-
- def get_label_arraylist(*args):
- width, height, names, rainbows = args
- # line = int(round(0.002 * (height + width) / 2) + 1)
- line = max(1, int(round(width / 1920 * 3)))
- tf = max(line, 1)
- fontScale = line * 0.33
- text_width, text_height = cv2.getTextSize(' 0.95', 0, fontScale=fontScale, thickness=tf)[0]
- label_arraylist = get_label_arrays(names, rainbows, fontSize=text_height, fontPath=FONT_PATH)
- return label_arraylist, (line, text_width, text_height, fontScale, tf)
-
-
- """
- 输入:
- imgarray_list--图像列表
- iframe_list -- 帧号列表
- modelPar--模型参数,字典,modelPar={'det_Model':,'seg_Model':}
- processPar--字典,存放检测相关参数,'half', 'device', 'conf_thres', 'iou_thres','trtFlag_det'
- sort_tracker--对象,初始化的跟踪对象。为了保持一致,即使是单帧也要有。
- trackPar--跟踪参数,关键字包括:det_cnt,windowsize
- segPar--None,分割模型相关参数。如果用不到,则为None
- 输入:retResults,timeInfos
- retResults:list
- retResults[0]--imgarray_list
- retResults[1]--所有结果用numpy格式,所有的检测结果,包括8类,每列分别是x1, y1, x2, y2, conf, detclass,iframe,trackId
- retResults[2]--所有结果用list表示,其中每一个元素为一个list,表示每一帧的检测结果,每一个结果是由多个list构成,每个list表示一个框,格式为[ cls , x0 ,y0 ,x1 ,y1 ,conf,ifrmae,trackId ],如 retResults[2][j][k]表示第j帧的第k个框。
- """
-
-
- def model_process(args):
- # (modeType, model_param, allowedList, names, rainbows)
- imgarray_list, iframe_list, model_param, request_id = args
- try:
- return AI_det_track_batch_N(imgarray_list, iframe_list,
- model_param['modelList'],
- model_param['postProcess'],
- model_param['sort_tracker'],
- model_param['trackPar'])
- except ServiceException as s:
- raise s
- except Exception:
- # self.num += 1
- # cv2.imwrite('/home/th/tuo_heng/dev/img%s.jpg' % str(self.num), frame)
- logger.error("算法模型分析异常: {}, requestId: {}", format_exc(), request_id)
- raise ServiceException(ExceptionType.MODEL_ANALYSE_EXCEPTION.value[0],
- ExceptionType.MODEL_ANALYSE_EXCEPTION.value[1])
-
-
- # 船只模型
- class ShipModel:
- __slots__ = "model_conf"
-
- def __init__(self, device, allowedList=None, requestId=None, modeType=None, gpu_name=None, base_dir=None, env=None):
- s = time.time()
- try:
- logger.info("########################加载船只模型########################, requestId:{}", requestId)
- par = modeType.value[4](str(device), gpu_name)
- obbModelPar = par['obbModelPar']
- model, decoder2 = load_model_decoder_OBB(obbModelPar)
- obbModelPar['decoder'] = decoder2
- names = par['labelnames']
- rainbows = par['postFile']["rainbows"]
- trackPar = par['trackPar']
- sort_tracker = OBB_Sort(max_age=trackPar['sort_max_age'], min_hits=trackPar['sort_min_hits'],
- iou_threshold=trackPar['sort_iou_thresh'])
- modelPar = {'obbmodel': model}
- segPar = None
- model_param = {
- "modelPar": modelPar,
- "obbModelPar": obbModelPar,
- "sort_tracker": sort_tracker,
- "trackPar": trackPar,
- "segPar": segPar
- }
- self.model_conf = (modeType, model_param, allowedList, names, rainbows)
- except Exception:
- logger.exception("模型加载异常:{}, requestId:{}", format_exc(), requestId)
- raise ServiceException(ExceptionType.MODEL_LOADING_EXCEPTION.value[0],
- ExceptionType.MODEL_LOADING_EXCEPTION.value[1])
- logger.info("模型初始化时间:{}, requestId:{}", time.time() - s, requestId)
-
-
- def obb_process(args):
- imgarray_list, iframe_list, model_param, request_id = args
- try:
- return OBB_tracker_batch(imgarray_list, iframe_list, model_param['modelPar'], model_param['obbModelPar'],
- model_param['sort_tracker'], model_param['trackPar'], model_param['segPar'])
- except ServiceException as s:
- raise s
- except Exception:
- # self.num += 1
- # cv2.imwrite('/home/th/tuo_heng/dev/img%s.jpg' % str(self.num), frame)
- logger.error("算法模型分析异常:{}, requestId:{}", format_exc(), request_id)
- raise ServiceException(ExceptionType.MODEL_ANALYSE_EXCEPTION.value[0],
- ExceptionType.MODEL_ANALYSE_EXCEPTION.value[1])
-
-
- # 车牌分割模型、健康码、行程码分割模型
- class IMModel:
- __slots__ = "model_conf"
-
- def __init__(self, device, allowedList=None, requestId=None, modeType=None, gpu_name=None, base_dir=None, env=None):
- try:
- logger.info("########################加载{}########################, requestId:{}", modeType.value[2],
- requestId)
- img_type = 'code'
- if ModelType2.PLATE_MODEL == modeType:
- img_type = 'plate'
- par = {
- 'code': {'weights': '../AIlib2/weights/conf/jkm/health_yolov5s_v3.jit', 'img_type': 'code', 'nc': 10},
- 'plate': {'weights': '../AIlib2/weights/conf/jkm/plate_yolov5s_v3.jit', 'img_type': 'plate', 'nc': 1},
- 'conf_thres': 0.4,
- 'iou_thres': 0.45,
- 'device': 'cuda:%s' % device,
- 'plate_dilate': (0.5, 0.3)
- }
- new_device = torch.device(par['device'])
- model = torch.jit.load(par[img_type]['weights'])
- model_param = {
- "device": new_device,
- "model": model,
- "par": par,
- "img_type": img_type
- }
- self.model_conf = (modeType, model_param, allowedList)
- except Exception:
- logger.error("模型加载异常:{}, requestId:{}", format_exc(), requestId)
- raise ServiceException(ExceptionType.MODEL_LOADING_EXCEPTION.value[0],
- ExceptionType.MODEL_LOADING_EXCEPTION.value[1])
-
-
- def im_process(args):
- model_param, frame, request_id = args
- device, par, img_type = model_param['device'], model_param['par'], model_param['img_type']
- try:
- img, padInfos = pre_process(frame, device)
- pred = model_param['model'](img)
- boxes = post_process(pred, padInfos, device, conf_thres=par['conf_thres'],
- iou_thres=par['iou_thres'], nc=par[img_type]['nc']) # 后处理
- dataBack = get_return_data(frame, boxes, modelType=img_type, plate_dilate=par['plate_dilate'])
- return dataBack
- except ServiceException as s:
- raise s
- except Exception:
- logger.error("算法模型分析异常:{}, requestId:{}", format_exc(), request_id)
- raise ServiceException(ExceptionType.MODEL_ANALYSE_EXCEPTION.value[0],
- ExceptionType.MODEL_ANALYSE_EXCEPTION.value[1])
-
-
- # 百度AI图片识别模型
- class BaiduAiImageModel:
- __slots__ = "model_conf"
-
- def __init__(self, device=None, allowedList=None, requestId=None, modeType=None, gpu_name=None, base_dir=None,
- env=None):
- try:
- logger.info("########################加载{}########################, requestId:{}", modeType.value[2],
- requestId)
- aipBodyAnalysisClient = AipBodyAnalysisClient(base_dir, env)
- aipImageClassifyClient = AipImageClassifyClient(base_dir, env)
- rainbows = COLOR
- vehicle_names = [VehicleEnum.CAR.value[1], VehicleEnum.TRICYCLE.value[1], VehicleEnum.MOTORBIKE.value[1],
- VehicleEnum.CARPLATE.value[1], VehicleEnum.TRUCK.value[1], VehicleEnum.BUS.value[1]]
- person_names = ['人']
- model_param = {
- "vehicle_client": aipImageClassifyClient,
- "person_client": aipBodyAnalysisClient,
- }
- self.model_conf = (modeType, model_param, allowedList, (vehicle_names, person_names), rainbows)
- except Exception:
- logger.exception("模型加载异常:{}, requestId:{}", format_exc(), requestId)
- raise ServiceException(ExceptionType.MODEL_LOADING_EXCEPTION.value[0],
- ExceptionType.MODEL_LOADING_EXCEPTION.value[1])
-
-
- def baidu_process(args):
- model_param, target, url, request_id = args
- try:
- baiduEnum = BAIDU_MODEL_TARGET_CONFIG2.get(target)
- if baiduEnum is None:
- raise ServiceException(ExceptionType.DETECTION_TARGET_TYPES_ARE_NOT_SUPPORTED.value[0],
- ExceptionType.DETECTION_TARGET_TYPES_ARE_NOT_SUPPORTED.value[1]
- + " target: " + target)
- return baiduEnum.value[2](model_param['vehicle_client'], model_param['person_client'], url, request_id)
- except ServiceException as s:
- raise s
- except Exception:
- logger.error("算法模型分析异常:{}, requestId:{}", format_exc(), request_id)
- raise ServiceException(ExceptionType.MODEL_ANALYSE_EXCEPTION.value[0],
- ExceptionType.MODEL_ANALYSE_EXCEPTION.value[1])
-
-
- def get_baidu_label_arraylist(*args):
- width, height, vehicle_names, person_names, rainbows = args
- # line = int(round(0.002 * (height + width) / 2) + 1)
- line = max(1, int(round(width / 1920 * 3) + 1))
- label = ' 0.97'
- tf = max(line, 1)
- fontScale = line * 0.33
- text_width, text_height = cv2.getTextSize(label, 0, fontScale=fontScale, thickness=tf)[0]
- vehicle_label_arrays = get_label_arrays(vehicle_names, rainbows, fontSize=text_height, fontPath=FONT_PATH)
- person_label_arrays = get_label_arrays(person_names, rainbows, fontSize=text_height, fontPath=FONT_PATH)
- font_config = (line, text_width, text_height, fontScale, tf)
- return vehicle_label_arrays, person_label_arrays, font_config
-
-
- def one_label(width, height, model_config):
- # (modeType, model_param, allowedList, names, rainbows)
- names = model_config[3]
- rainbows = model_config[4]
- label_arraylist, font_config = get_label_arraylist(width, height, names, rainbows)
- model_config[1]['label_arraylist'] = label_arraylist
- model_config[1]['font_config'] = font_config
-
-
- def baidu_label(width, height, model_config):
- # modeType, model_param, allowedList, (vehicle_names, person_names), rainbows
- vehicle_names = model_config[3][0]
- person_names = model_config[3][1]
- rainbows = model_config[4]
- vehicle_label_arrays, person_label_arrays, font_config = get_baidu_label_arraylist(width, height, vehicle_names,
- person_names, rainbows)
- model_config[1]['vehicle_label_arrays'] = vehicle_label_arrays
- model_config[1]['person_label_arrays'] = person_label_arrays
- model_config[1]['font_config'] = font_config
-
-
-
-
- def model_process1(args):
- imgarray_list, iframe_list, model_param, request_id = args
- model_conf, frame, request_id = args
- model_param, names, rainbows = model_conf[1], model_conf[3], model_conf[4]
- # modeType, model_param, allowedList, names, rainbows = model_conf
- # segmodel, names, label_arraylist, rainbows, objectPar, font, segPar, mode, postPar, requestId = args
- # model_param['digitFont'] = digitFont
- # model_param['label_arraylist'] = label_arraylist
- # model_param['font_config'] = font_config
- try:
- return AI_process([frame], model_param['model'], model_param['segmodel'], names, model_param['label_arraylist'],
- rainbows, objectPar=model_param['objectPar'], font=model_param['digitFont'],
- segPar=loads(dumps(model_param['segPar'])), mode=model_param['mode'],
- postPar=model_param['postPar'])
- except ServiceException as s:
- raise s
- except Exception:
- # self.num += 1
- # cv2.imwrite('/home/th/tuo_heng/dev/img%s.jpg' % str(self.num), frame)
- logger.error("算法模型分析异常:{}, requestId:{}", format_exc(), request_id)
- raise ServiceException(ExceptionType.MODEL_ANALYSE_EXCEPTION.value[0],
- ExceptionType.MODEL_ANALYSE_EXCEPTION.value[1])
-
-
- MODEL_CONFIG2 = {
- # 加载河道模型
- ModelType2.WATER_SURFACE_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.WATER_SURFACE_MODEL, t, z, h),
- ModelType2.WATER_SURFACE_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 加载森林模型
- ModelType2.FOREST_FARM_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.FOREST_FARM_MODEL, t, z, h),
- ModelType2.FOREST_FARM_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 加载交通模型
- ModelType2.TRAFFIC_FARM_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.TRAFFIC_FARM_MODEL, t, z, h),
- ModelType2.TRAFFIC_FARM_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 加载防疫模型
- ModelType2.EPIDEMIC_PREVENTION_MODEL.value[1]: (
- lambda x, y, r, t, z, h: IMModel(x, y, r, ModelType2.EPIDEMIC_PREVENTION_MODEL, t, z, h),
- ModelType2.EPIDEMIC_PREVENTION_MODEL,
- None,
- lambda x: im_process(x)),
- # 加载车牌模型
- ModelType2.PLATE_MODEL.value[1]: (
- lambda x, y, r, t, z, h: IMModel(x, y, r, ModelType2.PLATE_MODEL, t, z, h),
- ModelType2.PLATE_MODEL,
- None,
- lambda x: im_process(x)),
- # 加载车辆模型
- ModelType2.VEHICLE_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.VEHICLE_MODEL, t, z, h),
- ModelType2.VEHICLE_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 加载行人模型
- ModelType2.PEDESTRIAN_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.PEDESTRIAN_MODEL, t, z, h),
- ModelType2.PEDESTRIAN_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)),
- # 加载烟火模型
- ModelType2.SMOGFIRE_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.SMOGFIRE_MODEL, t, z, h),
- ModelType2.SMOGFIRE_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)),
- # 加载钓鱼游泳模型
- ModelType2.ANGLERSWIMMER_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.ANGLERSWIMMER_MODEL, t, z, h),
- ModelType2.ANGLERSWIMMER_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)),
- # 加载乡村模型
- ModelType2.COUNTRYROAD_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.COUNTRYROAD_MODEL, t, z, h),
- ModelType2.COUNTRYROAD_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)),
- # 加载船只模型
- ModelType2.SHIP_MODEL.value[1]: (
- lambda x, y, r, t, z, h: ShipModel(x, y, r, ModelType2.SHIP_MODEL, t, z, h),
- ModelType2.SHIP_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: obb_process(x)),
- # 百度AI图片识别模型
- ModelType2.BAIDU_MODEL.value[1]: (
- lambda x, y, r, t, z, h: BaiduAiImageModel(x, y, r, ModelType2.BAIDU_MODEL, t, z, h),
- ModelType2.BAIDU_MODEL,
- lambda x, y, z: baidu_label(x, y, z),
- lambda x: baidu_process(x)),
- # 航道模型
- ModelType2.CHANNEL_EMERGENCY_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.CHANNEL_EMERGENCY_MODEL, t, z, h),
- ModelType2.CHANNEL_EMERGENCY_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)),
- # 河道检测模型
- ModelType2.RIVER2_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.RIVER2_MODEL, t, z, h),
- ModelType2.RIVER2_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)),
- # 城管模型
- ModelType2.CITY_MANGEMENT_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.CITY_MANGEMENT_MODEL, t, z, h),
- ModelType2.CITY_MANGEMENT_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 人员落水模型
- ModelType2.DROWING_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.DROWING_MODEL, t, z, h),
- ModelType2.DROWING_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 城市违章模型
- ModelType2.NOPARKING_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.NOPARKING_MODEL, t, z, h),
- ModelType2.NOPARKING_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 城市公路模型
- ModelType2.CITYROAD_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.CITYROAD_MODEL, t, z, h),
- ModelType2.CITYROAD_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- # 加载坑槽模型
- ModelType2.POTHOLE_MODEL.value[1]: (
- lambda x, y, r, t, z, h: Model(x, y, r, ModelType2.POTHOLE_MODEL, t, z, h),
- ModelType2.POTHOLE_MODEL,
- lambda x, y, z: one_label(x, y, z),
- lambda x: model_process(x)
- ),
- }
|