|
- import copy
- import subprocess as sp
- from enum import Enum, unique
- from PIL import Image
- import time
- import cv2
-
- import sys
- sys.path.extend(['..','../AIlib' ])
-
- from AI import AI_process, AI_process_forest, get_postProcess_para
- import cv2,os,time
- from segutils.segmodel import SegModel
- from models.experimental import attempt_load
- from utils.torch_utils import select_device
- from utilsK.queRiver import get_labelnames,get_label_arrays
- import numpy as np
- import torch
- from utilsK.masterUtils import get_needed_objectsIndex
-
-
-
-
-
- # 异常枚举
- @unique
- class ModelType(Enum):
-
- WATER_SURFACE_MODEL = ("1", "001", "水面模型")
-
- FOREST_FARM_MODEL = ("2", "002", "森林模型")
-
- TRAFFIC_FARM_MODEL = ("3", "003", "交通模型")
-
- def checkCode(code):
- for model in ModelType:
- if model.value[1] == code:
- return True
- return False
- class ModelConfig():
- def __init__(self):
- postFile = '../AIlib/conf/para.json'
- self.conf_thres, self.iou_thres, self.classes, self.rainbows = get_postProcess_para(postFile)
-
-
- class SZModelConfig(ModelConfig):
-
- def __init__(self):
- super(SZModelConfig, self).__init__()
- labelnames = "../AIlib/weights/yolov5/class8/labelnames.json" ##对应类别表
- self.names = get_labelnames(labelnames)
- self.label_arraylist = get_label_arrays(self.names, self.rainbows, outfontsize=40,
- fontpath="../AIlib/conf/platech.ttf")
-
-
- class LCModelConfig(ModelConfig):
- def __init__(self):
- super(LCModelConfig, self).__init__()
- labelnames = "../AIlib/weights/forest/labelnames.json"
- self.names = get_labelnames(labelnames)
- self.label_arraylist = get_label_arrays(self.names, self.rainbows, outfontsize=40, fontpath="../AIlib/conf/platech.ttf")
-
-
- class RFModelConfig(ModelConfig):
- def __init__(self):
- super(RFModelConfig, self).__init__()
- labelnames = "../AIlib/weights/road/labelnames.json"
- self.names = get_labelnames(labelnames)
- imageW = 1536
- outfontsize=int(imageW/1920*40)
- self.label_arraylist = get_label_arrays(self.names, self.rainbows, outfontsize=outfontsize, fontpath="../AIlib/conf/platech.ttf")
-
- class Model():
- def __init__(self, device, allowedList=None):
- ##预先设置的参数
- self.device_ = device ##选定模型,可选 cpu,'0','1'
- self.allowedList = allowedList
-
-
- # 水面模型
- class SZModel(Model):
- def __init__(self, device, allowedList=None):
- super().__init__(device, allowedList)
-
- self.device = select_device(self.device_)
- self.half = self.device.type != 'cpu'
- self.model = attempt_load("../AIlib/weights/yolov5/class8/bestcao.pt", map_location=self.device)
- if self.half:
- self.model.half()
- self.segmodel = SegModel(nclass=2, weights='../AIlib/weights/STDC/model_maxmIOU75_1720_0.946_360640.pth',
- device=self.device)
-
- # names, label_arraylist, rainbows, conf_thres, iou_thres
- def process(self, frame, config):
- return AI_process([frame], self.model, self.segmodel, config[0], config[1],
- config[2], self.half, self.device, config[3], config[4],
- self.allowedList)
-
-
- # 森林模型
- class LCModel(Model):
- def __init__(self, device, allowedList=None):
- super().__init__(device, allowedList)
- self.device = select_device(self.device_)
- self.half = self.device.type != 'cpu' # half precision only supported on CUDA
- self.model = attempt_load("../AIlib/weights/forest/best.pt", map_location=self.device) # load FP32 model
- if self.half:
- self.model.half()
- self.segmodel = None
-
- # names, label_arraylist, rainbows, conf_thres, iou_thres
- def process(self, frame, config):
- return AI_process_forest([frame], self.model, self.segmodel, config[0], config[1], config[2],
- self.half, self.device, config[3], config[4], self.allowedList)
-
- # 交通模型
- class RFModel(Model):
- def __init__(self, device, allowedList=None):
- super().__init__(device, allowedList)
- self.device = select_device(self.device_)
- self.half = self.device.type != 'cpu' # half precision only supported on CUDA
- self.model = attempt_load("../AIlib/weights/road/best.pt", map_location=self.device) # load FP32 model
- if self.half:
- self.model.half()
- self.segmodel = None
-
- # names, label_arraylist, rainbows, conf_thres, iou_thres
- def process(self, frame, config):
- return AI_process_forest([frame], self.model, self.segmodel, config[0], config[1], config[2],
- self.half, self.device, config[3], config[4], self.allowedList)
-
- def get_model(args):
- for model in args[2]:
- try:
- code = '001'
- needed_objectsIndex = [int(category.get("id")) for category in model.get("categories")]
- if code == ModelType.WATER_SURFACE_MODEL.value[1]:
- return SZModel(args[1], needed_objectsIndex), code, args[0].get("sz")
- elif code == ModelType.FOREST_FARM_MODEL.value[1]:
- return LCModel(args[1], needed_objectsIndex), code, args[0].get("lc")
- elif code == ModelType.TRAFFIC_FARM_MODEL.value[1]:
- return RFModel(args[1], needed_objectsIndex), code, args[0].get("rf")
- else:
- raise Exception("11111")
- except Exception as e:
- raise Exception("22222")
- class PictureWaterMark():
-
- def common_water(self, image, logo):
- width, height = image.shape[1], image.shape[0]
- mark_width, mark_height = logo.shape[1], logo.shape[0]
- rate = int(width * 0.2) / mark_width
- logo_new = cv2.resize(logo, None, fx=rate, fy=rate, interpolation=cv2.INTER_NEAREST)
- position = (int(width * 0.95 - logo_new.shape[1]), int(height * 0.95 - logo_new.shape[0]))
- b = Image.new('RGBA', (width, height), (0, 0, 0, 0)) # 创建新图像:透明'
- a = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
- watermark = Image.fromarray(cv2.cvtColor(logo_new, cv2.COLOR_BGRA2RGBA))
- # 图片旋转
- # watermark = watermark.rotate(45)
- b.paste(a, (0, 0))
- b.paste(watermark, position, mask=watermark)
- return cv2.cvtColor(np.asarray(b), cv2.COLOR_BGR2RGB)
-
- def common_water_1(self, image, logo, alpha=1):
- h, w = image.shape[0], image.shape[1]
- if w >= h:
- rate = int(w * 0.1) / logo.shape[1]
- else:
- rate = int(h * 0.1) / logo.shape[0]
- mask = cv2.resize(logo, None, fx=rate, fy=rate, interpolation=cv2.INTER_NEAREST)
- mask_h, mask_w = mask.shape[0], mask.shape[1]
- mask_channels = cv2.split(mask)
- dst_channels = cv2.split(image)
- # b, g, r, a = cv2.split(mask)
- # 计算mask在图片的坐标
- ul_points = (int(h * 0.95) - mask_h, int(w - h * 0.05 - mask_w))
- dr_points = (int(h * 0.95), int(w - h * 0.05))
- for i in range(3):
- dst_channels[i][ul_points[0]: dr_points[0], ul_points[1]: dr_points[1]] = dst_channels[i][
- ul_points[0]: dr_points[0],
- ul_points[1]: dr_points[1]] * (
- 255.0 - mask_channels[3] * alpha) / 255
- dst_channels[i][ul_points[0]: dr_points[0], ul_points[1]: dr_points[1]] += np.array(
- mask_channels[i] * (mask_channels[3] * alpha / 255), dtype=np.uint8)
- dst_img = cv2.merge(dst_channels)
- return dst_img
- def video_merge(frame1, frame2, width, height):
- frameLeft = cv2.resize(frame1, (width, height), interpolation=cv2.INTER_LINEAR)
- frameRight = cv2.resize(frame2, (width, height), interpolation=cv2.INTER_LINEAR)
- frame_merge = np.hstack((frameLeft, frameRight))
- # frame_merge = np.hstack((frame1, frame2))
- return frame_merge
- cap = cv2.VideoCapture("/home/DATA/chenyukun/4.mp4")
-
- # Get video information
- fps = int(cap.get(cv2.CAP_PROP_FPS))
- print(fps)
- width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- print(width)
- height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- print(height)
- # command = ['ffmpeg',
- # '-y', # 不经过确认,输出时直接覆盖同名文件。
- # '-f', 'rawvideo',
- # '-vcodec', 'rawvideo',
- # '-pix_fmt', 'bgr24',
- # # '-s', "{}x{}".format(self.width * 2, self.height),
- # '-s', "{}x{}".format(width, height),
- # '-r', str(15),
- # '-i', '-', # 指定输入文件
- # '-g', '15',
- # '-sc_threshold', '0', # 使得GOP的插入更加均匀
- # '-b:v', '3000k', # 指定码率
- # '-tune', 'zerolatency', # 加速编码速度
- # '-c:v', 'libx264', # 指定视频编码器
- # '-pix_fmt', 'yuv420p',
- # "-an",
- # '-preset', 'ultrafast', # 指定输出的视频质量,会影响文件的生成速度,有以下几个可用的值 ultrafast,
- # # superfast, veryfast, faster, fast, medium, slow, slower, veryslow。
- # '-f', 'flv',
- # "rtmp://live.push.t-aaron.com/live/THSAk"]
- #
- # # 管道配置
- # p = sp.Popen(command, stdin=sp.PIPE, shell=False)
-
- sz = SZModelConfig()
- lc = LCModelConfig()
- rf = RFModelConfig()
- config = {
- "sz": (sz.names, sz.label_arraylist, sz.rainbows, sz.conf_thres, sz.iou_thres),
- "lc": (lc.names, lc.label_arraylist, lc.rainbows, lc.conf_thres, lc.iou_thres),
- "rf": (rf.names, rf.label_arraylist, rf.rainbows, rf.conf_thres, rf.iou_thres),
- }
- model = {
- "models": [
- {
- "code": "001",
- "categories": [
- {
- "id": "0",
- "config": {}
- },
- {
- "id": "1",
- "config": {}
- },
- {
- "id": "2",
- "config": {}
- },
- {
- "id": "3",
- "config": {}
- },
- {
- "id": "4",
- "config": {}
- },
- {
- "id": "5",
- "config": {}
- },
- {
- "id": "6",
- "config": {}
- },
- {
- "id": "7",
- "config": {}
- }
- ]
- }]
- }
-
- mod, model_type_code, modelConfig = get_model((config, str(0), model.get("models")))
- pic = PictureWaterMark()
- logo = cv2.imread("./image/logo.png", -1)
- ai_video_file = cv2.VideoWriter("/home/DATA/chenyukun/aa/2.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (width*2, height))
- while(cap.isOpened()):
- start =time.time()
- ret, frame = cap.read()
- # cap.grab()
- if not ret:
- print("Opening camera is failed")
- break
- p_result, timeOut = mod.process(copy.deepcopy(frame), modelConfig)
- frame = pic.common_water_1(frame, logo)
- p_result[1] = pic.common_water_1(p_result[1], logo)
- frame_merge = video_merge(frame, p_result[1], width, height)
- ai_video_file.write(frame_merge)
- print(time.time()-start)
- ai_video_file.release()
- cap.release()
-
-
-
|