|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- '''
- 这个版本增加了船舶过滤功能
- '''
- import time
- import sys
- from core.models.bisenet import BiSeNet
- from models.AIDetector_pytorch import Detector
- from models.AIDetector_pytorch import plot_one_box,Colors
- from utils.postprocess_utils import center_coordinate,fourcorner_coordinate,remove_simivalue,remove_sameeleme_inalist
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '1'
- from models.model_stages import BiSeNet
- import cv2
- import torch
- import torch.nn.functional as F
- from PIL import Image
- import numpy as np
- import torchvision.transforms as transforms
- from utils.segutils import colour_code_segmentation
- from utils.segutils import get_label_info
- os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
- os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- sys.path.append("../") # 为了导入上级目录的,添加一个新路径
-
-
- def AI_postprocess(preds,_mask_cv,pars,_img_cv):
- '''考虑船上人过滤'''
- '''输入:落水人员的结果(类别+坐标)、原图、mask图像
- 过程:获得mask的轮廓,判断人员是否在轮廓内。
- 在,则保留且绘制;不在,舍弃。
- 返回:最终绘制的结果图、最终落水人员(坐标、类别、置信度),
- '''
- '''1、最大分割水域作为判断依据'''
- zoom_factor=4 #缩小因子设置为4,考虑到numpy中分别遍历xy进行缩放耗时大。
- original_height = _mask_cv.shape[0]
- original_width=_mask_cv.shape[1]
- zoom_height=int(original_height/zoom_factor)
- zoom_width=int(original_width/zoom_factor)
-
- _mask_cv = cv2.resize(_mask_cv, (zoom_width,zoom_height)) #缩小原图,宽在前,高在后
- t4 = time.time()
- img_gray = cv2.cvtColor(_mask_cv, cv2.COLOR_BGR2GRAY) if len(_mask_cv.shape)==3 else _mask_cv #
- t5 = time.time()
- contours, thresh = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
-
- # 寻找轮廓(多边界)
- contours, hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, 2)
- contour_info = []
- for c in contours:
- contour_info.append((
- c,
- cv2.isContourConvex(c),
- cv2.contourArea(c),
- ))
- contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
- t6 = time.time()
-
- '''新增模块::如果水域为空,则返回原图、无落水人员等。'''
- if contour_info==[]:
- # final_img=_img_cv
- final_head_person_filterwater=[]
- timeInfos=0
- # return final_img, final_head_person_filterwater
- return final_head_person_filterwater,timeInfos
- else:
- max_contour = contour_info[0]
- max_contour=max_contour[0]*zoom_factor# contours恢复原图尺寸
- print(max_contour)
- t7 = time.time()
-
-
- '''2.1、preds中head+person取出,boat取出。'''
- init_head_person=[]
- init_boat = []
- for i in range(len(preds)):
- if preds[i][4]=='head' or preds[i][4]=='person':
- init_head_person.append(preds[i])
- else:
- init_boat.append(preds[i])
- t8 = time.time()
-
- '''新增模块:2.2、preds中head+person取出,过滤掉head与person中指向同一人的部分,保留同一人的person标签。'''
- init_head=[]
- init_person=[]
- #head与person标签分开
- for i in range(len(init_head_person)):
- if init_head_person[i][4]=='head':
- init_head.append(init_head_person[i])
- else:
- init_person.append(init_head_person[i])
- # person的框形成contours
- person_contour=[]
- for i in range(len(init_person)):
- boundbxs_temp=[init_person[i][0],init_person[i][1],init_person[i][2],init_person[i][3]]
- contour_temp_person=fourcorner_coordinate(boundbxs_temp) #得到person预测框的顺序contour
- contour_temp_person=np.array(contour_temp_person)
- contour_temp_person=np.float32(contour_temp_person)
- person_contour.append(np.array(contour_temp_person))
- # head是否在person的contours内,在说明是同一人,过滤掉。
- list_head=[]
- for i in range(len(init_head)):
- for j in range(len(person_contour)):
- center_x, center_y=center_coordinate(init_head[i])
- flag = cv2.pointPolygonTest(person_contour[j], (center_x, center_y), False) #若为False,会找点是否在内,外,或轮廓上(相应返回+1, -1, 0)。
- if flag==1:
- pass
- else:
- list_head.append(init_head[i])
- # person和最终head合并起来
- init_head_person_temp=init_person+list_head
-
- '''3、preds中head+person,通过1中水域过滤'''
- init_head_person_filterwater=init_head_person_temp
- final_head_person_filterwater=[]
- for i in range(len(init_head_person_filterwater)):
- center_x, center_y=center_coordinate(init_head_person_filterwater[i])
- flag = cv2.pointPolygonTest(max_contour, (center_x, center_y), False) #若为False,会找点是否在内,外,或轮廓上(相应返回+1, -1, 0)。
- if flag==1:
- final_head_person_filterwater.append(init_head_person_filterwater[i])
- else:
- pass
- t9 = time.time()
-
- '''4、水域过滤后的head+person,再通过船舶范围过滤'''
- init_head_person_filterboat=final_head_person_filterwater
- # final_head_person_filterboat=[]
- #获取船舶范围
- boat_contour=[]
- for i in range(len(init_boat)):
- boundbxs1=[init_boat[i][0],init_boat[i][1],init_boat[i][2],init_boat[i][3]]
- contour_temp=fourcorner_coordinate(boundbxs1) #得到boat预测框的顺序contour
- contour_temp_=np.array(contour_temp)
- contour_temp_=np.float32(contour_temp_)
- boat_contour.append(np.array(contour_temp_))
- t10 = time.time()
- # 遍历船舶范围,取出在船舶范围内的head和person(可能有重复元素)
- list_headperson_inboat=[]
- for i in range(len(init_head_person_filterboat)):
- for j in range(len(boat_contour)):
- center_x, center_y=center_coordinate(init_head_person_filterboat[i])
- # yyyyyyyy=boat_contour[j]
- flag = cv2.pointPolygonTest(boat_contour[j], (center_x, center_y), False) #若为False,会找点是否在内,外,或轮廓上(相应返回+1, -1, 0)。
- if flag==1:
- list_headperson_inboat.append(init_head_person_filterboat[i])
- else:
- pass
- print('list_headperson_inboat',list_headperson_inboat)
- if len(list_headperson_inboat)==0:
- pass
- else:
- list_headperson_inboat=remove_sameeleme_inalist(list_headperson_inboat) #将重复嵌套列表元素删除
- # 过滤船舶范围内的head和person
- final_head_person_filterboat=remove_simivalue(init_head_person_filterboat,list_headperson_inboat)
- t11 = time.time()
-
- '''5、输出最终落水人员,并绘制保存检测图'''
- colors = Colors()
- if final_head_person_filterwater is not None:
- for i in range(len(final_head_person_filterboat)):
- # lbl = self.names[int(cls_id)]
- lbl = final_head_person_filterboat[i][4]
- xyxy=[final_head_person_filterboat[i][0],final_head_person_filterboat[i][1],final_head_person_filterboat[i][2],final_head_person_filterboat[i][3]]
- c = int(5)
- plot_one_box(xyxy, _img_cv, label=lbl, color=colors(c, True), line_thickness=3)
- final_img=_img_cv
- t12 = time.time()
- # cv2.imwrite('final_result.png', _img_cv)
- t13 = time.time()
-
- print('存图:%s, 过滤标签:%s ,遍历船舶范围:%s,水域过滤后的head+person:%s,水域过滤:%s,head+person、boat取出:%s,新增如果水域为空:%s,找contours:%s,图像改变:%s'
- %((t13-t12) * 1000,(t12-t11) * 1000,(t11-t10) * 1000,(t10-t9) * 1000,(t9-t8) * 1000,(t8-t7) * 1000,(t7-t6) * 1000,(t6-t5) * 1000,(t5-t4) * 1000 ) )
- timeInfos=('存图:%s, 过滤标签:%s ,遍历船舶范围:%s,水域过滤后的head+person:%s,水域过滤:%s,head+person、boat取出:%s,新增如果水域为空:%s,找contours:%s,图像改变:%s'
- %((t13-t12) * 1000,(t12-t11) * 1000,(t11-t10) * 1000,(t10-t9) * 1000,(t9-t8) * 1000,(t8-t7) * 1000,(t7-t6) * 1000,(t6-t5) * 1000,(t5-t4) * 1000 ) )
- return final_head_person_filterwater,timeInfos #返回最终绘制的结果图、最终落水人员(坐标、类别、置信度)
-
-
- def AI_process(model, segmodel, args1,path1):
- '''对原图进行目标检测和水域分割'''
- '''输入:检测模型、分割模型、配置参数、路径
- 返回:返回目标检测结果、原图像、分割图像,
- '''
- '''检测图片'''
- t21=time.time()
- _img_cv = cv2.imread(path1) # 将这里的送入yolov5
- t22 = time.time()
-
- # _img_cv=_img_cv.numpy()
- pred = model.detect(_img_cv) # 检测结果
- #对pred处理,处理成list嵌套
- pred=[[*x[0:4],x[4],x[5].cpu().tolist()] for x in pred[1]]
- # pred=[[x[0],*x[1:5],x[5].cpu().float()] for x in pred[1]]
- print('pred', pred)
-
- t23 = time.time()
- '''分割图片'''
- img = Image.open(path1).convert('RGB')
- t231 = time.time()
- transf1 = transforms.ToTensor()
- transf2 = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
- imgs = transf1(img)
- imgs = transf2(imgs)
- print(path1) # numpy数组格式为(H,W,C)
-
- size = [360, 640]
- imgs = imgs.unsqueeze(0)
- imgs = imgs.cuda()
- N, C, H, W = imgs.size()
-
- self_scale = 360 / H
- new_hw = [int(H * self_scale), int(W * self_scale)]
- print("line50", new_hw)
- imgs = F.interpolate(imgs, new_hw, mode='bilinear', align_corners=True)
- t24 = time.time()
- with torch.no_grad():
- logits = segmodel(imgs)[0]
- t241 = time.time()
- logits = F.interpolate(logits, size=size, mode='bilinear', align_corners=True)
- probs = torch.softmax(logits, dim=1)
- preds = torch.argmax(probs, dim=1)
- preds_squeeze = preds.squeeze(0)
- preds_squeeze_predict = colour_code_segmentation(np.array(preds_squeeze.cpu()), args1['label_info'])
- preds_squeeze_predict = cv2.resize(np.uint8(preds_squeeze_predict), (W, H))
- predict_mask = cv2.cvtColor(np.uint8(preds_squeeze_predict), cv2.COLOR_RGB2BGR)
- _mask_cv =predict_mask
- t25 = time.time()
- cv2.imwrite('seg_result.png', _mask_cv)
- t26 = time.time()
- print('存分割图:%s, 分割后处理:%s ,分割推理:%s ,分割图变小:%s,分割图读图:%s,检测模型推理:%s,读图片:%s'
- %((t26-t25) * 1000,(t25-t241) * 1000,(t241-t24) * 1000,(t24-t231) * 1000,(t231-t23) * 1000,(t23-t22) * 1000,(t22-t21) * 1000 ) )
-
- return pred, _img_cv, _mask_cv #返回目标检测结果、原图像、分割图像
-
- def main():
-
- '''配置参数'''
- label_info = get_label_info('utils/class_dict.csv')
- pars={'cuda':'0','crop_size':512,'input_dir':'input_dir','output_dir':'output_dir','workers':16,'label_info':label_info,
- 'dspth':'./data/','backbone':'STDCNet813','use_boundary_2':False, 'use_boundary_4':False, 'use_boundary_8':True, 'use_boundary_16':False,'use_conv_last':False}
-
-
- dete_weights='weights/best_luoshui20230608.pt'
- '''分割模型权重路径'''
- seg_weights = 'weights/model_final.pth'
-
- '''初始化目标检测模型'''
- model = Detector(dete_weights)
-
-
- '''初始化分割模型2'''
- n_classes = 2
- segmodel = BiSeNet(backbone=pars['backbone'], n_classes=n_classes,
- use_boundary_2=pars['use_boundary_2'], use_boundary_4=pars['use_boundary_4'],
- use_boundary_8=pars['use_boundary_8'], use_boundary_16=pars['use_boundary_16'],
- use_conv_last=pars['use_conv_last'])
- segmodel.load_state_dict(torch.load(seg_weights))
- segmodel.cuda()
- segmodel.eval()
-
-
- '''图像测试'''
- folders = os.listdir(pars['input_dir'])
- for i in range(len(folders)):
- path1 = pars['input_dir'] + '/' + folders[i]
-
- t1=time.time()
-
- '''对原图进行目标检测和水域分割'''
- pred, _img_cv, _mask_cv=AI_process(model,segmodel, pars,path1)
-
- t2 = time.time()
-
- '''进入后处理,判断水域内有落水人员'''
- haha,zzzz=AI_postprocess(pred, _mask_cv,pars,_img_cv )
- t3 = time.time()
-
- print('总时间分布:前处理t2-t1,后处理t3-t2',(t2-t1)*1000,(t3-t2)*1000)
-
- if __name__ == "__main__":
- main()
|