|
- # Activation functions
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
-
- # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
- class SiLU(nn.Module): # export-friendly version of nn.SiLU()
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
-
-
- class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
- @staticmethod
- def forward(x):
- # return x * F.hardsigmoid(x) # for torchscript and CoreML
- return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
-
-
- # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
- class Mish(nn.Module):
- @staticmethod
- def forward(x):
- return x * F.softplus(x).tanh()
-
-
- class MemoryEfficientMish(nn.Module):
- class F(torch.autograd.Function):
- @staticmethod
- def forward(ctx, x):
- ctx.save_for_backward(x)
- return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
-
- @staticmethod
- def backward(ctx, grad_output):
- x = ctx.saved_tensors[0]
- sx = torch.sigmoid(x)
- fx = F.softplus(x).tanh()
- return grad_output * (fx + x * sx * (1 - fx * fx))
-
- def forward(self, x):
- return self.F.apply(x)
-
-
- # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
- class FReLU(nn.Module):
- def __init__(self, c1, k=3): # ch_in, kernel
- super().__init__()
- self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
- self.bn = nn.BatchNorm2d(c1)
-
- def forward(self, x):
- return torch.max(x, self.bn(self.conv(x)))
-
-
- # ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
- class AconC(nn.Module):
- r""" ACON activation (activate or not).
- AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
- according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
- """
-
- def __init__(self, c1):
- super().__init__()
- self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
- self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
- self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
-
- def forward(self, x):
- dpx = (self.p1 - self.p2) * x
- return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
-
-
- class MetaAconC(nn.Module):
- r""" ACON activation (activate or not).
- MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
- according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
- """
-
- def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
- super().__init__()
- c2 = max(r, c1 // r)
- self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
- self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
- self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
- self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
- # self.bn1 = nn.BatchNorm2d(c2)
- # self.bn2 = nn.BatchNorm2d(c1)
-
- def forward(self, x):
- y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
- # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
- # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
- beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
- dpx = (self.p1 - self.p2) * x
- return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|