|
- # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- # Created by: Hang Zhang
- # ECE Department, Rutgers University
- # Email: zhang.hang@rutgers.edu
- # Copyright (c) 2017
- # This source code is licensed under the MIT-style license found in the
- # LICENSE file in the root directory of this source tree
- # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-
- import math
-
-
- class LR_Scheduler(object):
- """Learning Rate Scheduler
-
- Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}``
-
- Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))``
-
- Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9``
-
- Args:
- args:
- :attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`),
- :attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs,
- :attr:`args.lr_step`
-
- iters_per_epoch: number of iterations per epoch
- """
- def __init__(self, mode, base_lr, num_epochs, iters_per_epoch=0,
- lr_step=0, warmup_epochs=0):
- self.mode = mode
- print('Using {} LR Scheduler!'.format(self.mode))
- self.lr = base_lr
- if mode == 'step':
- assert lr_step
- self.lr_step = lr_step
- self.iters_per_epoch = iters_per_epoch
- self.N = num_epochs * iters_per_epoch
- self.epoch = -1
- self.warmup_iters = warmup_epochs * iters_per_epoch
-
- def __call__(self, optimizer, i, epoch, best_pred):
- T = epoch * self.iters_per_epoch + i
- if self.mode == 'cos':
- lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi))
- elif self.mode == 'poly':
- lr = self.lr * pow((1 - 1.0 * T / self.N), 0.9)
- elif self.mode == 'step':
- lr = self.lr * (0.1 ** (epoch // self.lr_step))
- else:
- raise NotImplemented
- # warm up lr schedule
- if self.warmup_iters > 0 and T < self.warmup_iters:
- lr = lr * 1.0 * T / self.warmup_iters
- if epoch > self.epoch:
- print('\n=>Epoches %i, learning rate = %.4f, \
- previous best = %.4f' % (epoch, lr, best_pred))
- self.epoch = epoch
- assert lr >= 0
- self._adjust_learning_rate(optimizer, lr)
-
- def _adjust_learning_rate(self, optimizer, lr):
- if len(optimizer.param_groups) == 1:
- optimizer.param_groups[0]['lr'] = lr
- else:
- # enlarge the lr at the head
- optimizer.param_groups[0]['lr'] = lr
- for i in range(1, len(optimizer.param_groups)):
- optimizer.param_groups[i]['lr'] = lr * 10
|