|
- import numpy as np
- import matplotlib.pyplot as plt
- from torch.nn import Module
- import torch
- import torch.nn as nn
- class wj2_bce_Loss(Module):
- def __init__(self, kernel_size=11, sigma=2,weights=[0.2,1.0,1.0], as_loss=True):
- super().__init__()
- self.kernel_size = kernel_size
- self.sigma = sigma
- self.weights = torch.tensor(weights)
- self.as_loss = as_loss
- self.gaussian_kernel = self._create_gaussian_kernel(self.kernel_size, self.sigma)
- self.sobel_kernel = torch.tensor([[[[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]]])
- self.pad = int((self.kernel_size - 1)/2)
- self.tmax = torch.tensor(1.0)
- #self.criterion = nn.CrossEntropyLoss( reduction = 'none')
- self.criterion1 = nn.CrossEntropyLoss( )
- self.criterion2 = nn.MSELoss()
- def forward(self, x, y):
-
- if not self.gaussian_kernel.is_cuda:
- self.gaussian_kernel = self.gaussian_kernel.to(x.device)
- if not self.sobel_kernel.is_cuda:
- self.sobel_kernel = self.sobel_kernel.to(x.device)
- if not self.tmax.is_cuda:
- self.tmax = self.tmax.to(x.device)
- if not self.weights.is_cuda:
- self.weights = self.weights.to(x.device)
-
- #get pred weight
- preds_x = torch.argmax(x,axis=1)
- preds_edge = self._get_weight(preds_x)##(bs,1,h,w)
- #get label weight
- labels_edge = self._get_weight(y) ##(bs,1,h,w)
-
- celoss = self.criterion1(x,y.long())
- edgeloss = self.criterion2(preds_edge, labels_edge)
-
- return self.weights[0]*edgeloss + self.weights[1]*celoss
-
- def _get_weight(self,mask):
- ##preds 变成0,1图,(bs,h,w)
- mask_map = (mask <= self.tmax).float() * mask + (mask > self.tmax).float() * self.tmax
- mask_map = mask_map.unsqueeze(1)
- padLayer = nn.ReflectionPad2d(1)
- mask_pad = padLayer(mask_map)
-
- # 定义sobel算子参数
- mask_edge = torch.conv2d(mask_pad.float(), self.sobel_kernel.float(), padding=0)
- mask_edge = torch.absolute(mask_edge)
-
- ##低通滤波膨胀边界
- smooth_edge = torch.conv2d(mask_edge.float(), self.gaussian_kernel.float(), padding=self.pad)
- return smooth_edge
-
- def _create_gaussian_kernel(self, kernel_size, sigma):
- start = (1 - kernel_size) / 2
- end = (1 + kernel_size) / 2
- kernel_1d = torch.arange(start, end, step=1, dtype=torch.float)
- kernel_1d = torch.exp(-torch.pow(kernel_1d / sigma, 2) / 2)
- kernel_1d = (kernel_1d / kernel_1d.sum()).unsqueeze(dim=0)
-
- kernel_2d = torch.matmul(kernel_1d.t(), kernel_1d)
- kernel_2d = kernel_2d.expand(1, 1, kernel_size, kernel_size).contiguous()
- return kernel_2d
-
-
- def GaussLowPassFiltering(ksize,sigma):
- kernel = np.zeros((ksize,ksize),dtype=np.float32)
- cons = 1.0/(2.0*np.pi*sigma*sigma)
-
- for i in range(ksize):
- for j in range(ksize):
- x = i - (ksize-1)/2
- y = j - (ksize-1)/2
- kernel[j,i] = cons * np.exp((-1.0)*(x**2+y**2)/2.0/(sigma**2) )
- print(kernel)
- plt.figure(0);plt.imshow(kernel);plt.show()
- return kernel.reshape(1,1,ksize,ksize)
-
- def create_gaussian_kernel( kernel_size, sigma):
-
- start = (1 - kernel_size) / 2
- end = (1 + kernel_size) / 2
- kernel_1d = torch.arange(start, end, step=1, dtype=torch.float)
- kernel_1d = torch.exp(-torch.pow(kernel_1d / sigma, 2) / 2)
- kernel_1d = (kernel_1d / kernel_1d.sum()).unsqueeze(dim=0)
-
- kernel_2d = torch.matmul(kernel_1d.t(), kernel_1d)
- kernel_2d = kernel_2d.expand(3, 1, kernel_size, kernel_size).contiguous()
- return kernel_2d
-
- def main():
- import matplotlib.pyplot as plt
- import numpy as np
- import torch
- import torch.nn as nn
- #preds=torch.rand(8,5,10,10)
- #preds=torch.argmax(preds,axis=1)
- preds=torch.zeros(8,100,100)
- preds[:,:,50:]=3.0
- t_max = torch.tensor(1.0)
-
-
- ##preds 变成0,1图,(bs,h,w)
- preds_map = (preds <= t_max).float() * preds + (preds > t_max).float() * t_max
-
- preds_map = preds_map.unsqueeze(1)
- padLayer = nn.ReflectionPad2d(1)
- preds_pad = padLayer(preds_map)
- # 定义sobel算子参数
- sobel_kernel =torch.tensor([[[[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]]])
- preds_edge_dilate = torch.conv2d(preds_pad.float(), sobel_kernel.float(), padding=0)
- preds_edge_dilate = torch.absolute(preds_edge_dilate)
-
- ##低通滤波,平滑边界
- f_shift ,pad, sigma= 11, 5 , 2
-
- kernel = torch.from_numpy(GaussLowPassFiltering(f_shift,sigma))
- smooth_edge = torch.conv2d(preds_edge_dilate.float(), kernel.float(), padding=pad)
- print()
-
- show_result0 = preds_map.numpy()
- show_result2=smooth_edge.numpy()
- show_result3=preds.numpy()
- #print(show_result2[0,0,:,5])
- #print(show_result2[0,0,5,:])
- #plt.figure(0);plt.imshow(show_result0[0,0]);plt.figure(1);
- plt.imshow(show_result2[0,0]);plt.show();
- #plt.figure(3);plt.imshow(show_result3[0]);plt.show();
- print()
- def test_loss_moule():
- preds=torch.rand(8,5,100,100)
- #preds=torch.argmax(preds,axis=1)
-
- targets =torch.zeros(8,100,100)
- targets[:,:,50:]=3.0
-
- for weights in [[1.0,1.0,1.0],[ 0.0,0.0,1.0],[ 1.0,0.0,0.0],[ 0.0,1.0,0.0],[ 1.0,1.0,0.0] ]:
- loss_layer = wj_bce_Loss(kernel_size=11, sigma=2,weights=weights, as_loss=True)
- loss = loss_layer(preds,targets)
- print(weights,' loss: ',loss)
-
-
- if __name__=='__main__':
- #main()
- #kk = create_gaussian_kernel( kernel_size=11, sigma=2)
- #print(kk.numpy().shape)
- #plt.figure(0);plt.imshow(kk[0,0]);plt.show()
- test_loss_moule()
|