基于Yolov7的路面病害检测代码
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
NYH 388df99a80 V1.0 10 months ago
..
data V1.0 10 months ago
README.md V1.0 10 months ago
boundingbox.py V1.0 10 months ago
client.py V1.0 10 months ago
labels.py V1.0 10 months ago
processing.py V1.0 10 months ago
render.py V1.0 10 months ago

README.md

YOLOv7 on Triton Inference Server

Instructions to deploy YOLOv7 as TensorRT engine to Triton Inference Server.

Triton Inference Server takes care of model deployment with many out-of-the-box benefits, like a GRPC and HTTP interface, automatic scheduling on multiple GPUs, shared memory (even on GPU), dynamic server-side batching, health metrics and memory resource management.

There are no additional dependencies needed to run this deployment, except a working docker daemon with GPU support.

Export TensorRT

See https://github.com/WongKinYiu/yolov7#export for more info.

#install onnx-simplifier not listed in general yolov7 requirements.txt
pip3 install onnx-simplifier 

# Pytorch Yolov7 -> ONNX with grid, EfficientNMS plugin and dynamic batch size
python export.py --weights ./yolov7.pt --grid --end2end --dynamic-batch --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
# ONNX -> TensorRT with trtexec and docker
docker run -it --rm --gpus=all nvcr.io/nvidia/tensorrt:22.06-py3
# Copy onnx -> container: docker cp yolov7.onnx <container-id>:/workspace/
# Export with FP16 precision, min batch 1, opt batch 8 and max batch 8
./tensorrt/bin/trtexec --onnx=yolov7.onnx --minShapes=images:1x3x640x640 --optShapes=images:8x3x640x640 --maxShapes=images:8x3x640x640 --fp16 --workspace=4096 --saveEngine=yolov7-fp16-1x8x8.engine --timingCacheFile=timing.cache
# Test engine
./tensorrt/bin/trtexec --loadEngine=yolov7-fp16-1x8x8.engine
# Copy engine -> host: docker cp <container-id>:/workspace/yolov7-fp16-1x8x8.engine .

Example output of test with RTX 3090.

[I] === Performance summary ===
[I] Throughput: 73.4985 qps
[I] Latency: min = 14.8578 ms, max = 15.8344 ms, mean = 15.07 ms, median = 15.0422 ms, percentile(99%) = 15.7443 ms
[I] End-to-End Host Latency: min = 25.8715 ms, max = 28.4102 ms, mean = 26.672 ms, median = 26.6082 ms, percentile(99%) = 27.8314 ms
[I] Enqueue Time: min = 0.793701 ms, max = 1.47144 ms, mean = 1.2008 ms, median = 1.28644 ms, percentile(99%) = 1.38965 ms
[I] H2D Latency: min = 1.50073 ms, max = 1.52454 ms, mean = 1.51225 ms, median = 1.51404 ms, percentile(99%) = 1.51941 ms
[I] GPU Compute Time: min = 13.3386 ms, max = 14.3186 ms, mean = 13.5448 ms, median = 13.5178 ms, percentile(99%) = 14.2151 ms
[I] D2H Latency: min = 0.00878906 ms, max = 0.0172729 ms, mean = 0.0128844 ms, median = 0.0125732 ms, percentile(99%) = 0.0166016 ms
[I] Total Host Walltime: 3.04768 s
[I] Total GPU Compute Time: 3.03404 s
[I] Explanations of the performance metrics are printed in the verbose logs.

Note: 73.5 qps x batch 8 = 588 fps @ ~15ms latency.

Model Repository

See Triton Model Repository Documentation for more info.

# Create folder structure
mkdir -p triton-deploy/models/yolov7/1/
touch triton-deploy/models/yolov7/config.pbtxt
# Place model
mv yolov7-fp16-1x8x8.engine triton-deploy/models/yolov7/1/model.plan

Model Configuration

See Triton Model Configuration Documentation for more info.

Minimal configuration for triton-deploy/models/yolov7/config.pbtxt:

name: "yolov7"
platform: "tensorrt_plan"
max_batch_size: 8
dynamic_batching { }

Example repository:

$ tree triton-deploy/
triton-deploy/
└── models
    └── yolov7
        ├── 1
        │   └── model.plan
        └── config.pbtxt

3 directories, 2 files

Start Triton Inference Server

docker run --gpus all --rm --ipc=host --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -p8000:8000 -p8001:8001 -p8002:8002 -v$(pwd)/triton-deploy/models:/models nvcr.io/nvidia/tritonserver:22.06-py3 tritonserver --model-repository=/models --strict-model-config=false --log-verbose 1

In the log you should see:

+--------+---------+--------+
| Model  | Version | Status |
+--------+---------+--------+
| yolov7 | 1       | READY  |
+--------+---------+--------+

Performance with Model Analyzer

See Triton Model Analyzer Documentation for more info.

Performance numbers @ RTX 3090 + AMD Ryzen 9 5950X

Example test for 16 concurrent clients using shared memory, each with batch size 1 requests:

docker run -it --ipc=host --net=host nvcr.io/nvidia/tritonserver:22.06-py3-sdk /bin/bash

./install/bin/perf_analyzer -m yolov7 -u 127.0.0.1:8001 -i grpc --shared-memory system --concurrency-range 16

# Result (truncated)
Concurrency: 16, throughput: 590.119 infer/sec, latency 27080 usec

Throughput for 16 clients with batch size 1 is the same as for a single thread running the engine at 16 batch size locally thanks to Triton Dynamic Batching Strategy. Result without dynamic batching (disable in model configuration) considerably worse:

# Result (truncated)
Concurrency: 16, throughput: 335.587 infer/sec, latency 47616 usec

How to run model in your code

Example client can be found in client.py. It can run dummy input, images and videos.

pip3 install tritonclient[all] opencv-python
python3 client.py image data/dog.jpg

exemplary output result

$ python3 client.py --help
usage: client.py [-h] [-m MODEL] [--width WIDTH] [--height HEIGHT] [-u URL] [-o OUT] [-f FPS] [-i] [-v] [-t CLIENT_TIMEOUT] [-s] [-r ROOT_CERTIFICATES] [-p PRIVATE_KEY] [-x CERTIFICATE_CHAIN] {dummy,image,video} [input]

positional arguments:
  {dummy,image,video}   Run mode. 'dummy' will send an emtpy buffer to the server to test if inference works. 'image' will process an image. 'video' will process a video.
  input                 Input file to load from in image or video mode

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Inference model name, default yolov7
  --width WIDTH         Inference model input width, default 640
  --height HEIGHT       Inference model input height, default 640
  -u URL, --url URL     Inference server URL, default localhost:8001
  -o OUT, --out OUT     Write output into file instead of displaying it
  -f FPS, --fps FPS     Video output fps, default 24.0 FPS
  -i, --model-info      Print model status, configuration and statistics
  -v, --verbose         Enable verbose client output
  -t CLIENT_TIMEOUT, --client-timeout CLIENT_TIMEOUT
                        Client timeout in seconds, default no timeout
  -s, --ssl             Enable SSL encrypted channel to the server
  -r ROOT_CERTIFICATES, --root-certificates ROOT_CERTIFICATES
                        File holding PEM-encoded root certificates, default none
  -p PRIVATE_KEY, --private-key PRIVATE_KEY
                        File holding PEM-encoded private key, default is none
  -x CERTIFICATE_CHAIN, --certificate-chain CERTIFICATE_CHAIN
                        File holding PEM-encoded certicate chain default is none