|
- import argparse
- import sys
- import time
- import warnings
-
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
-
- import torch
- import torch.nn as nn
- from torch.utils.mobile_optimizer import optimize_for_mobile
-
- import models
- from models.experimental import attempt_load, End2End
- from utils.activations import Hardswish, SiLU
- from utils.general import set_logging, check_img_size
- from utils.torch_utils import select_device
- from utils.add_nms import RegisterNMS
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
- parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
- parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
- parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
- parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
- parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
- parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
- parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
- parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
- parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
- parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
- opt = parser.parse_args()
- opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
- opt.dynamic = opt.dynamic and not opt.end2end
- opt.dynamic = False if opt.dynamic_batch else opt.dynamic
- print(opt)
- set_logging()
- t = time.time()
-
- # Load PyTorch model
- device = select_device(opt.device)
- model = attempt_load(opt.weights, map_location=device) # load FP32 model
- labels = model.names
-
- # Checks
- gs = int(max(model.stride)) # grid size (max stride)
- opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
-
- # Input
- img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
-
- # Update model
- for k, m in model.named_modules():
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
- if isinstance(m, models.common.Conv): # assign export-friendly activations
- if isinstance(m.act, nn.Hardswish):
- m.act = Hardswish()
- elif isinstance(m.act, nn.SiLU):
- m.act = SiLU()
- # elif isinstance(m, models.yolo.Detect):
- # m.forward = m.forward_export # assign forward (optional)
- model.model[-1].export = not opt.grid # set Detect() layer grid export
- y = model(img) # dry run
- if opt.include_nms:
- model.model[-1].include_nms = True
- y = None
-
- # TorchScript export
- try:
- print('\nStarting TorchScript export with torch %s...' % torch.__version__)
- f = opt.weights.replace('.pt', '.torchscript.pt') # filename
- ts = torch.jit.trace(model, img, strict=False)
- ts.save(f)
- print('TorchScript export success, saved as %s' % f)
- except Exception as e:
- print('TorchScript export failure: %s' % e)
-
- # CoreML export
- try:
- import coremltools as ct
-
- print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
- # convert model from torchscript and apply pixel scaling as per detect.py
- ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
- bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
- if bits < 32:
- if sys.platform.lower() == 'darwin': # quantization only supported on macOS
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
- ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
- else:
- print('quantization only supported on macOS, skipping...')
-
- f = opt.weights.replace('.pt', '.mlmodel') # filename
- ct_model.save(f)
- print('CoreML export success, saved as %s' % f)
- except Exception as e:
- print('CoreML export failure: %s' % e)
-
- # TorchScript-Lite export
- try:
- print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
- f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
- tsl = torch.jit.trace(model, img, strict=False)
- tsl = optimize_for_mobile(tsl)
- tsl._save_for_lite_interpreter(f)
- print('TorchScript-Lite export success, saved as %s' % f)
- except Exception as e:
- print('TorchScript-Lite export failure: %s' % e)
-
- # ONNX export
- try:
- import onnx
-
- print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
- f = opt.weights.replace('.pt', '.onnx') # filename
- model.eval()
- output_names = ['classes', 'boxes'] if y is None else ['output']
- dynamic_axes = None
- if opt.dynamic:
- dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
- 'output': {0: 'batch', 2: 'y', 3: 'x'}}
- if opt.dynamic_batch:
- opt.batch_size = 'batch'
- dynamic_axes = {
- 'images': {
- 0: 'batch',
- }, }
- if opt.end2end and opt.max_wh is None:
- output_axes = {
- 'num_dets': {0: 'batch'},
- 'det_boxes': {0: 'batch'},
- 'det_scores': {0: 'batch'},
- 'det_classes': {0: 'batch'},
- }
- else:
- output_axes = {
- 'output': {0: 'batch'},
- }
- dynamic_axes.update(output_axes)
- if opt.grid:
- if opt.end2end:
- print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
- model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels))
- if opt.end2end and opt.max_wh is None:
- output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
- shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
- opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
- else:
- output_names = ['output']
- else:
- model.model[-1].concat = True
-
- torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
- output_names=output_names,
- dynamic_axes=dynamic_axes)
-
- # Checks
- onnx_model = onnx.load(f) # load onnx model
- onnx.checker.check_model(onnx_model) # check onnx model
-
- if opt.end2end and opt.max_wh is None:
- for i in onnx_model.graph.output:
- for j in i.type.tensor_type.shape.dim:
- j.dim_param = str(shapes.pop(0))
-
- # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
-
- # # Metadata
- # d = {'stride': int(max(model.stride))}
- # for k, v in d.items():
- # meta = onnx_model.metadata_props.add()
- # meta.key, meta.value = k, str(v)
- # onnx.save(onnx_model, f)
-
- if opt.simplify:
- try:
- import onnxsim
-
- print('\nStarting to simplify ONNX...')
- onnx_model, check = onnxsim.simplify(onnx_model)
- assert check, 'assert check failed'
- except Exception as e:
- print(f'Simplifier failure: {e}')
-
- # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
- onnx.save(onnx_model,f)
- print('ONNX export success, saved as %s' % f)
-
- if opt.include_nms:
- print('Registering NMS plugin for ONNX...')
- mo = RegisterNMS(f)
- mo.register_nms()
- mo.save(f)
-
- except Exception as e:
- print('ONNX export failure: %s' % e)
-
- # Finish
- print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|