|
- import numpy as np
- import random
- import torch
- import torch.nn as nn
-
- from models.common import Conv, DWConv
- from utils.google_utils import attempt_download
-
-
- class CrossConv(nn.Module):
- # Cross Convolution Downsample
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
- super(CrossConv, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
- class Sum(nn.Module):
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
- def __init__(self, n, weight=False): # n: number of inputs
- super(Sum, self).__init__()
- self.weight = weight # apply weights boolean
- self.iter = range(n - 1) # iter object
- if weight:
- self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
-
- def forward(self, x):
- y = x[0] # no weight
- if self.weight:
- w = torch.sigmoid(self.w) * 2
- for i in self.iter:
- y = y + x[i + 1] * w[i]
- else:
- for i in self.iter:
- y = y + x[i + 1]
- return y
-
-
- class MixConv2d(nn.Module):
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
- super(MixConv2d, self).__init__()
- groups = len(k)
- if equal_ch: # equal c_ per group
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
- else: # equal weight.numel() per group
- b = [c2] + [0] * groups
- a = np.eye(groups + 1, groups, k=-1)
- a -= np.roll(a, 1, axis=1)
- a *= np.array(k) ** 2
- a[0] = 1
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
-
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.LeakyReLU(0.1, inplace=True)
-
- def forward(self, x):
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
-
-
- class Ensemble(nn.ModuleList):
- # Ensemble of models
- def __init__(self):
- super(Ensemble, self).__init__()
-
- def forward(self, x, augment=False):
- y = []
- for module in self:
- y.append(module(x, augment)[0])
- # y = torch.stack(y).max(0)[0] # max ensemble
- # y = torch.stack(y).mean(0) # mean ensemble
- y = torch.cat(y, 1) # nms ensemble
- return y, None # inference, train output
-
-
-
-
-
- class ORT_NMS(torch.autograd.Function):
- '''ONNX-Runtime NMS operation'''
- @staticmethod
- def forward(ctx,
- boxes,
- scores,
- max_output_boxes_per_class=torch.tensor([100]),
- iou_threshold=torch.tensor([0.45]),
- score_threshold=torch.tensor([0.25])):
- device = boxes.device
- batch = scores.shape[0]
- num_det = random.randint(0, 100)
- batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
- idxs = torch.arange(100, 100 + num_det).to(device)
- zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
- selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
- selected_indices = selected_indices.to(torch.int64)
- return selected_indices
-
- @staticmethod
- def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
- return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
-
-
- class TRT_NMS(torch.autograd.Function):
- '''TensorRT NMS operation'''
- @staticmethod
- def forward(
- ctx,
- boxes,
- scores,
- background_class=-1,
- box_coding=1,
- iou_threshold=0.45,
- max_output_boxes=100,
- plugin_version="1",
- score_activation=0,
- score_threshold=0.25,
- ):
- batch_size, num_boxes, num_classes = scores.shape
- num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
- det_boxes = torch.randn(batch_size, max_output_boxes, 4)
- det_scores = torch.randn(batch_size, max_output_boxes)
- det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
- return num_det, det_boxes, det_scores, det_classes
-
- @staticmethod
- def symbolic(g,
- boxes,
- scores,
- background_class=-1,
- box_coding=1,
- iou_threshold=0.45,
- max_output_boxes=100,
- plugin_version="1",
- score_activation=0,
- score_threshold=0.25):
- out = g.op("TRT::EfficientNMS_TRT",
- boxes,
- scores,
- background_class_i=background_class,
- box_coding_i=box_coding,
- iou_threshold_f=iou_threshold,
- max_output_boxes_i=max_output_boxes,
- plugin_version_s=plugin_version,
- score_activation_i=score_activation,
- score_threshold_f=score_threshold,
- outputs=4)
- nums, boxes, scores, classes = out
- return nums, boxes, scores, classes
-
-
- class ONNX_ORT(nn.Module):
- '''onnx module with ONNX-Runtime NMS operation.'''
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
- super().__init__()
- self.device = device if device else torch.device("cpu")
- self.max_obj = torch.tensor([max_obj]).to(device)
- self.iou_threshold = torch.tensor([iou_thres]).to(device)
- self.score_threshold = torch.tensor([score_thres]).to(device)
- self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
- self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
- dtype=torch.float32,
- device=self.device)
- self.n_classes=n_classes
-
- def forward(self, x):
- boxes = x[:, :, :4]
- conf = x[:, :, 4:5]
- scores = x[:, :, 5:]
- if self.n_classes == 1:
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
- # so there is no need to multiplicate.
- else:
- scores *= conf # conf = obj_conf * cls_conf
- boxes @= self.convert_matrix
- max_score, category_id = scores.max(2, keepdim=True)
- dis = category_id.float() * self.max_wh
- nmsbox = boxes + dis
- max_score_tp = max_score.transpose(1, 2).contiguous()
- selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
- X, Y = selected_indices[:, 0], selected_indices[:, 2]
- selected_boxes = boxes[X, Y, :]
- selected_categories = category_id[X, Y, :].float()
- selected_scores = max_score[X, Y, :]
- X = X.unsqueeze(1).float()
- return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
-
- class ONNX_TRT(nn.Module):
- '''onnx module with TensorRT NMS operation.'''
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
- super().__init__()
- assert max_wh is None
- self.device = device if device else torch.device('cpu')
- self.background_class = -1,
- self.box_coding = 1,
- self.iou_threshold = iou_thres
- self.max_obj = max_obj
- self.plugin_version = '1'
- self.score_activation = 0
- self.score_threshold = score_thres
- self.n_classes=n_classes
-
- def forward(self, x):
- boxes = x[:, :, :4]
- conf = x[:, :, 4:5]
- scores = x[:, :, 5:]
- if self.n_classes == 1:
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
- # so there is no need to multiplicate.
- else:
- scores *= conf # conf = obj_conf * cls_conf
- num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
- self.iou_threshold, self.max_obj,
- self.plugin_version, self.score_activation,
- self.score_threshold)
- return num_det, det_boxes, det_scores, det_classes
-
-
- class End2End(nn.Module):
- '''export onnx or tensorrt model with NMS operation.'''
- def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
- super().__init__()
- device = device if device else torch.device('cpu')
- assert isinstance(max_wh,(int)) or max_wh is None
- self.model = model.to(device)
- self.model.model[-1].end2end = True
- self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
- self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
- self.end2end.eval()
-
- def forward(self, x):
- x = self.model(x)
- x = self.end2end(x)
- return x
-
-
-
-
-
- def attempt_load(weights, map_location=None):
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
- model = Ensemble()
- for w in weights if isinstance(weights, list) else [weights]:
- attempt_download(w)
- ckpt = torch.load(w, map_location=map_location) # load
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
-
- # Compatibility updates
- for m in model.modules():
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
- m.inplace = True # pytorch 1.7.0 compatibility
- elif type(m) is nn.Upsample:
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
- elif type(m) is Conv:
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
-
- if len(model) == 1:
- return model[-1] # return model
- else:
- print('Ensemble created with %s\n' % weights)
- for k in ['names', 'stride']:
- setattr(model, k, getattr(model[-1], k))
- return model # return ensemble
-
|