|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- import sys
- import argparse
- import os
- import struct
- import torch
- from utils.torch_utils import select_device
-
-
- def parse_args():
- parser = argparse.ArgumentParser(description='Convert .pt file to .wts')
- parser.add_argument('-w', '--weights', required=True,
- help='Input weights (.pt) file path (required)')
- parser.add_argument(
- '-o', '--output', help='Output (.wts) file path (optional)')
- parser.add_argument(
- '-t', '--type', type=str, default='detect', choices=['detect', 'cls', 'seg'],
- help='determines the model is detection/classification')
- args = parser.parse_args()
- if not os.path.isfile(args.weights):
- raise SystemExit('Invalid input file')
- if not args.output:
- args.output = os.path.splitext(args.weights)[0] + '.wts'
- elif os.path.isdir(args.output):
- args.output = os.path.join(
- args.output,
- os.path.splitext(os.path.basename(args.weights))[0] + '.wts')
- return args.weights, args.output, args.type
-
-
- pt_file, wts_file, m_type = parse_args()
- print(f'Generating .wts for {m_type} model')
-
- # Load model
- print(f'Loading {pt_file}')
- device = select_device('cpu')
- model = torch.load(pt_file, map_location=device) # Load FP32 weights
- model = model['ema' if model.get('ema') else 'model'].float()
-
- if m_type in ['detect', 'seg']:
- # update anchor_grid info
- anchor_grid = model.model[-1].anchors * model.model[-1].stride[..., None, None]
- # model.model[-1].anchor_grid = anchor_grid
- delattr(model.model[-1], 'anchor_grid') # model.model[-1] is detect layer
- # The parameters are saved in the OrderDict through the "register_buffer" method, and then saved to the weight.
- model.model[-1].register_buffer("anchor_grid", anchor_grid)
- model.model[-1].register_buffer("strides", model.model[-1].stride)
-
- model.to(device).eval()
-
- print(f'Writing into {wts_file}')
- with open(wts_file, 'w') as f:
- f.write('{}\n'.format(len(model.state_dict().keys())))
- for k, v in model.state_dict().items():
- vr = v.reshape(-1).cpu().numpy()
- f.write('{} {} '.format(k, len(vr)))
- for vv in vr:
- f.write(' ')
- f.write(struct.pack('>f', float(vv)).hex())
- f.write('\n')
|