|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- #!/usr/bin/env python
-
- class Callbacks:
- """"
- Handles all registered callbacks for YOLOv5 Hooks
- """
-
- _callbacks = {
- 'on_pretrain_routine_start': [],
- 'on_pretrain_routine_end': [],
-
- 'on_train_start': [],
- 'on_train_epoch_start': [],
- 'on_train_batch_start': [],
- 'optimizer_step': [],
- 'on_before_zero_grad': [],
- 'on_train_batch_end': [],
- 'on_train_epoch_end': [],
-
- 'on_val_start': [],
- 'on_val_batch_start': [],
- 'on_val_image_end': [],
- 'on_val_batch_end': [],
- 'on_val_end': [],
-
- 'on_fit_epoch_end': [], # fit = train + val
- 'on_model_save': [],
- 'on_train_end': [],
-
- 'teardown': [],
- }
-
- def __init__(self):
- return
-
- def register_action(self, hook, name='', callback=None):
- """
- Register a new action to a callback hook
-
- Args:
- hook The callback hook name to register the action to
- name The name of the action
- callback The callback to fire
- """
- assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
- assert callable(callback), f"callback '{callback}' is not callable"
- self._callbacks[hook].append({'name': name, 'callback': callback})
-
- def get_registered_actions(self, hook=None):
- """"
- Returns all the registered actions by callback hook
-
- Args:
- hook The name of the hook to check, defaults to all
- """
- if hook:
- return self._callbacks[hook]
- else:
- return self._callbacks
-
- def run_callbacks(self, hook, *args, **kwargs):
- """
- Loop through the registered actions and fire all callbacks
- """
- for logger in self._callbacks[hook]:
- # print(f"Running callbacks.{logger['callback'].__name__}()")
- logger['callback'](*args, **kwargs)
-
- def on_pretrain_routine_start(self, *args, **kwargs):
- """
- Fires all registered callbacks at the start of each pretraining routine
- """
- self.run_callbacks('on_pretrain_routine_start', *args, **kwargs)
-
- def on_pretrain_routine_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of each pretraining routine
- """
- self.run_callbacks('on_pretrain_routine_end', *args, **kwargs)
-
- def on_train_start(self, *args, **kwargs):
- """
- Fires all registered callbacks at the start of each training
- """
- self.run_callbacks('on_train_start', *args, **kwargs)
-
- def on_train_epoch_start(self, *args, **kwargs):
- """
- Fires all registered callbacks at the start of each training epoch
- """
- self.run_callbacks('on_train_epoch_start', *args, **kwargs)
-
- def on_train_batch_start(self, *args, **kwargs):
- """
- Fires all registered callbacks at the start of each training batch
- """
- self.run_callbacks('on_train_batch_start', *args, **kwargs)
-
- def optimizer_step(self, *args, **kwargs):
- """
- Fires all registered callbacks on each optimizer step
- """
- self.run_callbacks('optimizer_step', *args, **kwargs)
-
- def on_before_zero_grad(self, *args, **kwargs):
- """
- Fires all registered callbacks before zero grad
- """
- self.run_callbacks('on_before_zero_grad', *args, **kwargs)
-
- def on_train_batch_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of each training batch
- """
- self.run_callbacks('on_train_batch_end', *args, **kwargs)
-
- def on_train_epoch_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of each training epoch
- """
- self.run_callbacks('on_train_epoch_end', *args, **kwargs)
-
- def on_val_start(self, *args, **kwargs):
- """
- Fires all registered callbacks at the start of the validation
- """
- self.run_callbacks('on_val_start', *args, **kwargs)
-
- def on_val_batch_start(self, *args, **kwargs):
- """
- Fires all registered callbacks at the start of each validation batch
- """
- self.run_callbacks('on_val_batch_start', *args, **kwargs)
-
- def on_val_image_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of each val image
- """
- self.run_callbacks('on_val_image_end', *args, **kwargs)
-
- def on_val_batch_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of each validation batch
- """
- self.run_callbacks('on_val_batch_end', *args, **kwargs)
-
- def on_val_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of the validation
- """
- self.run_callbacks('on_val_end', *args, **kwargs)
-
- def on_fit_epoch_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of each fit (train+val) epoch
- """
- self.run_callbacks('on_fit_epoch_end', *args, **kwargs)
-
- def on_model_save(self, *args, **kwargs):
- """
- Fires all registered callbacks after each model save
- """
- self.run_callbacks('on_model_save', *args, **kwargs)
-
- def on_train_end(self, *args, **kwargs):
- """
- Fires all registered callbacks at the end of training
- """
- self.run_callbacks('on_train_end', *args, **kwargs)
-
- def teardown(self, *args, **kwargs):
- """
- Fires all registered callbacks before teardown
- """
- self.run_callbacks('teardown', *args, **kwargs)
|