TensorRT转化代码
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

10 månader sedan
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. """Validate a trained YOLOv5 model accuracy on a custom dataset
  2. Usage:
  3. $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
  4. """
  5. import argparse
  6. import json
  7. import os
  8. import sys
  9. from pathlib import Path
  10. from threading import Thread
  11. import numpy as np
  12. import torch
  13. from tqdm import tqdm
  14. FILE = Path(__file__).absolute()
  15. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  16. from models.experimental import attempt_load
  17. from utils.datasets import create_dataloader
  18. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  19. non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  20. from utils.metrics import ap_per_class, ConfusionMatrix, box_iou
  21. from utils.plots import plot_images, output_to_target, plot_study_txt
  22. from utils.torch_utils import select_device, time_sync
  23. from utils.callbacks import Callbacks
  24. def save_one_txt(predn, save_conf, shape, file):
  25. # Save one txt result
  26. gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
  27. for *xyxy, conf, cls in predn.tolist():
  28. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  29. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  30. with open(file, 'a') as f:
  31. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  32. def save_one_json(predn, jdict, path, class_map):
  33. # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
  34. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  35. box = xyxy2xywh(predn[:, :4]) # xywh
  36. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  37. for p, b in zip(predn.tolist(), box.tolist()):
  38. jdict.append({'image_id': image_id,
  39. 'category_id': class_map[int(p[5])],
  40. 'bbox': [round(x, 3) for x in b],
  41. 'score': round(p[4], 5)})
  42. def process_batch(detections, labels, iouv):
  43. """
  44. Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
  45. Arguments:
  46. detections (Array[N, 6]), x1, y1, x2, y2, conf, class
  47. labels (Array[M, 5]), class, x1, y1, x2, y2
  48. Returns:
  49. correct (Array[N, 10]), for 10 IoU levels
  50. """
  51. correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
  52. iou = box_iou(labels[:, 1:], detections[:, :4])
  53. x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
  54. if x[0].shape[0]:
  55. matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
  56. if x[0].shape[0] > 1:
  57. matches = matches[matches[:, 2].argsort()[::-1]]
  58. matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
  59. # matches = matches[matches[:, 2].argsort()[::-1]]
  60. matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
  61. matches = torch.Tensor(matches).to(iouv.device)
  62. correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
  63. return correct
  64. @torch.no_grad()
  65. def run(data,
  66. weights=None, # model.pt path(s)
  67. batch_size=32, # batch size
  68. imgsz=640, # inference size (pixels)
  69. conf_thres=0.001, # confidence threshold
  70. iou_thres=0.6, # NMS IoU threshold
  71. task='val', # train, val, test, speed or study
  72. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  73. single_cls=False, # treat as single-class dataset
  74. augment=False, # augmented inference
  75. verbose=False, # verbose output
  76. save_txt=False, # save results to *.txt
  77. save_hybrid=False, # save label+prediction hybrid results to *.txt
  78. save_conf=False, # save confidences in --save-txt labels
  79. save_json=False, # save a COCO-JSON results file
  80. project='runs/val', # save to project/name
  81. name='exp', # save to project/name
  82. exist_ok=False, # existing project/name ok, do not increment
  83. half=True, # use FP16 half-precision inference
  84. model=None,
  85. dataloader=None,
  86. save_dir=Path(''),
  87. plots=True,
  88. callbacks=Callbacks(),
  89. compute_loss=None,
  90. ):
  91. # Initialize/load model and set device
  92. training = model is not None
  93. if training: # called by train.py
  94. device = next(model.parameters()).device # get model device
  95. else: # called directly
  96. device = select_device(device, batch_size=batch_size)
  97. # Directories
  98. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  99. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  100. # Load model
  101. model = attempt_load(weights, map_location=device) # load FP32 model
  102. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  103. imgsz = check_img_size(imgsz, s=gs) # check image size
  104. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  105. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  106. # model = nn.DataParallel(model)
  107. # Data
  108. data = check_dataset(data) # check
  109. # Half
  110. half &= device.type != 'cpu' # half precision only supported on CUDA
  111. if half:
  112. model.half()
  113. # Configure
  114. model.eval()
  115. is_coco = type(data['val']) is str and data['val'].endswith('coco/val2017.txt') # COCO dataset
  116. nc = 1 if single_cls else int(data['nc']) # number of classes
  117. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  118. niou = iouv.numel()
  119. # Dataloader
  120. if not training:
  121. if device.type != 'cpu':
  122. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  123. task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  124. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
  125. prefix=colorstr(f'{task}: '))[0]
  126. seen = 0
  127. confusion_matrix = ConfusionMatrix(nc=nc)
  128. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  129. class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
  130. s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  131. p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
  132. loss = torch.zeros(3, device=device)
  133. jdict, stats, ap, ap_class = [], [], [], []
  134. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  135. t_ = time_sync()
  136. img = img.to(device, non_blocking=True)
  137. img = img.half() if half else img.float() # uint8 to fp16/32
  138. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  139. targets = targets.to(device)
  140. nb, _, height, width = img.shape # batch size, channels, height, width
  141. t = time_sync()
  142. t0 += t - t_
  143. # Run model
  144. out, train_out = model(img, augment=augment) # inference and training outputs
  145. t1 += time_sync() - t
  146. # Compute loss
  147. if compute_loss:
  148. loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
  149. # Run NMS
  150. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  151. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  152. t = time_sync()
  153. out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
  154. t2 += time_sync() - t
  155. # Statistics per image
  156. for si, pred in enumerate(out):
  157. labels = targets[targets[:, 0] == si, 1:]
  158. nl = len(labels)
  159. tcls = labels[:, 0].tolist() if nl else [] # target class
  160. path, shape = Path(paths[si]), shapes[si][0]
  161. seen += 1
  162. if len(pred) == 0:
  163. if nl:
  164. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  165. continue
  166. # Predictions
  167. if single_cls:
  168. pred[:, 5] = 0
  169. predn = pred.clone()
  170. scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
  171. # Evaluate
  172. if nl:
  173. tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
  174. scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
  175. labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
  176. correct = process_batch(predn, labelsn, iouv)
  177. if plots:
  178. confusion_matrix.process_batch(predn, labelsn)
  179. else:
  180. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
  181. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
  182. # Save/log
  183. if save_txt:
  184. save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
  185. if save_json:
  186. save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
  187. callbacks.on_val_image_end(pred, predn, path, names, img[si])
  188. # Plot images
  189. if plots and batch_i < 3:
  190. f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
  191. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  192. f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
  193. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  194. # Compute statistics
  195. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  196. if len(stats) and stats[0].any():
  197. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  198. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  199. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  200. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  201. else:
  202. nt = torch.zeros(1)
  203. # Print results
  204. pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
  205. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  206. # Print results per class
  207. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  208. for i, c in enumerate(ap_class):
  209. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  210. # Print speeds
  211. t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image
  212. if not training:
  213. shape = (batch_size, 3, imgsz, imgsz)
  214. print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
  215. # Plots
  216. if plots:
  217. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  218. callbacks.on_val_end()
  219. # Save JSON
  220. if save_json and len(jdict):
  221. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  222. anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
  223. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  224. print(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
  225. with open(pred_json, 'w') as f:
  226. json.dump(jdict, f)
  227. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  228. check_requirements(['pycocotools'])
  229. from pycocotools.coco import COCO
  230. from pycocotools.cocoeval import COCOeval
  231. anno = COCO(anno_json) # init annotations api
  232. pred = anno.loadRes(pred_json) # init predictions api
  233. eval = COCOeval(anno, pred, 'bbox')
  234. if is_coco:
  235. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  236. eval.evaluate()
  237. eval.accumulate()
  238. eval.summarize()
  239. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  240. except Exception as e:
  241. print(f'pycocotools unable to run: {e}')
  242. # Return results
  243. model.float() # for training
  244. if not training:
  245. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  246. print(f"Results saved to {colorstr('bold', save_dir)}{s}")
  247. maps = np.zeros(nc) + map
  248. for i, c in enumerate(ap_class):
  249. maps[c] = ap[i]
  250. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  251. def parse_opt():
  252. parser = argparse.ArgumentParser(prog='val.py')
  253. parser.add_argument('--data', type=str, default='data/data_class_4.yaml', help='dataset.yaml path')
  254. parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp3/weights/last.pt', help='model.pt path(s)')
  255. parser.add_argument('--batch-size', type=int, default=32, help='batch size')
  256. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  257. parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
  258. parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
  259. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  260. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  261. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  262. parser.add_argument('--augment', action='store_true', help='augmented inference')
  263. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  264. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  265. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  266. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  267. parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
  268. parser.add_argument('--project', default='runs/val', help='save to project/name')
  269. parser.add_argument('--name', default='exp', help='save to project/name')
  270. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  271. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  272. opt = parser.parse_args()
  273. opt.save_json |= opt.data.endswith('coco.yaml')
  274. opt.save_txt |= opt.save_hybrid
  275. opt.data = check_file(opt.data) # check file
  276. return opt
  277. def main(opt):
  278. set_logging()
  279. print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  280. check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=('tensorboard', 'thop'))
  281. if opt.task in ('train', 'val', 'test'): # run normally
  282. run(**vars(opt))
  283. elif opt.task == 'speed': # speed benchmarks
  284. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  285. run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
  286. save_json=False, plots=False)
  287. elif opt.task == 'study': # run over a range of settings and save/plot
  288. # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  289. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  290. for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
  291. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  292. y = [] # y axis
  293. for i in x: # img-size
  294. print(f'\nRunning {f} point {i}...')
  295. r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
  296. iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
  297. y.append(r + t) # results and times
  298. np.savetxt(f, y, fmt='%10.4g') # save
  299. os.system('zip -r study.zip study_*.txt')
  300. plot_study_txt(x=x) # plot
  301. if __name__ == "__main__":
  302. opt = parse_opt()
  303. main(opt)