|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- #include "config.h"
- #include "cuda_utils.h"
- #include "logging.h"
- #include "utils.h"
- #include "preprocess.h"
- #include "postprocess.h"
- #include "model.h"
-
- #include <iostream>
- #include <chrono>
- #include <cmath>
-
- using namespace nvinfer1;
-
- static Logger gLogger;
- const static int kOutputSize1 = kMaxNumOutputBbox * sizeof(Detection) / sizeof(float) + 1;
- const static int kOutputSize2 = 32 * (kInputH / 4) * (kInputW / 4);
-
- bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir, std::string& labels_filename) {
- if (argc < 4) return false;
- if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) {
- wts = std::string(argv[2]);
- engine = std::string(argv[3]);
- auto net = std::string(argv[4]);
- if (net[0] == 'n') {
- gd = 0.33;
- gw = 0.25;
- } else if (net[0] == 's') {
- gd = 0.33;
- gw = 0.50;
- } else if (net[0] == 'm') {
- gd = 0.67;
- gw = 0.75;
- } else if (net[0] == 'l') {
- gd = 1.0;
- gw = 1.0;
- } else if (net[0] == 'x') {
- gd = 1.33;
- gw = 1.25;
- } else if (net[0] == 'c' && argc == 7) {
- gd = atof(argv[5]);
- gw = atof(argv[6]);
- } else {
- return false;
- }
- } else if (std::string(argv[1]) == "-d" && argc == 5) {
- engine = std::string(argv[2]);
- img_dir = std::string(argv[3]);
- labels_filename = std::string(argv[4]);
- } else {
- return false;
- }
- return true;
- }
-
- void prepare_buffers(ICudaEngine* engine, float** gpu_input_buffer, float** gpu_output_buffer1, float** gpu_output_buffer2, float** cpu_output_buffer1, float** cpu_output_buffer2) {
- assert(engine->getNbBindings() == 3);
- // In order to bind the buffers, we need to know the names of the input and output tensors.
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
- const int inputIndex = engine->getBindingIndex(kInputTensorName);
- const int outputIndex1 = engine->getBindingIndex(kOutputTensorName);
- const int outputIndex2 = engine->getBindingIndex("proto");
- assert(inputIndex == 0);
- assert(outputIndex1 == 1);
- assert(outputIndex2 == 2);
-
- // Create GPU buffers on device
- CUDA_CHECK(cudaMalloc((void**)gpu_input_buffer, kBatchSize * 3 * kInputH * kInputW * sizeof(float)));
- CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer1, kBatchSize * kOutputSize1 * sizeof(float)));
- CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer2, kBatchSize * kOutputSize2 * sizeof(float)));
-
- // Alloc CPU buffers
- *cpu_output_buffer1 = new float[kBatchSize * kOutputSize1];
- *cpu_output_buffer2 = new float[kBatchSize * kOutputSize2];
- }
-
- void infer(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* output1, float* output2, int batchSize) {
- context.enqueue(batchSize, buffers, stream, nullptr);
- CUDA_CHECK(cudaMemcpyAsync(output1, buffers[1], batchSize * kOutputSize1 * sizeof(float), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaMemcpyAsync(output2, buffers[2], batchSize * kOutputSize2 * sizeof(float), cudaMemcpyDeviceToHost, stream));
- cudaStreamSynchronize(stream);
- }
-
- void serialize_engine(unsigned int max_batchsize, float& gd, float& gw, std::string& wts_name, std::string& engine_name) {
- // Create builder
- IBuilder* builder = createInferBuilder(gLogger);
- IBuilderConfig* config = builder->createBuilderConfig();
-
- // Create model to populate the network, then set the outputs and create an engine
- ICudaEngine *engine = nullptr;
-
- engine = build_seg_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
-
- assert(engine != nullptr);
-
- // Serialize the engine
- IHostMemory* serialized_engine = engine->serialize();
- assert(serialized_engine != nullptr);
-
- // Save engine to file
- std::ofstream p(engine_name, std::ios::binary);
- if (!p) {
- std::cerr << "Could not open plan output file" << std::endl;
- assert(false);
- }
- p.write(reinterpret_cast<const char*>(serialized_engine->data()), serialized_engine->size());
-
- // Close everything down
- engine->destroy();
- config->destroy();
- serialized_engine->destroy();
- builder->destroy();
- }
-
- void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine, IExecutionContext** context) {
- std::ifstream file(engine_name, std::ios::binary);
- if (!file.good()) {
- std::cerr << "read " << engine_name << " error!" << std::endl;
- assert(false);
- }
- size_t size = 0;
- file.seekg(0, file.end);
- size = file.tellg();
- file.seekg(0, file.beg);
- char* serialized_engine = new char[size];
- assert(serialized_engine);
- file.read(serialized_engine, size);
- file.close();
-
- *runtime = createInferRuntime(gLogger);
- assert(*runtime);
- *engine = (*runtime)->deserializeCudaEngine(serialized_engine, size);
- assert(*engine);
- *context = (*engine)->createExecutionContext();
- assert(*context);
- delete[] serialized_engine;
- }
-
- int main(int argc, char** argv) {
- cudaSetDevice(kGpuId);
-
- std::string wts_name = "";
- std::string engine_name = "";
- std::string labels_filename = "";
- float gd = 0.0f, gw = 0.0f;
-
- std::string img_dir;
- if (!parse_args(argc, argv, wts_name, engine_name, gd, gw, img_dir, labels_filename)) {
- std::cerr << "arguments not right!" << std::endl;
- std::cerr << "./yolov5_seg -s [.wts] [.engine] [n/s/m/l/x or c gd gw] // serialize model to plan file" << std::endl;
- std::cerr << "./yolov5_seg -d [.engine] ../images coco.txt // deserialize plan file, read the labels file and run inference" << std::endl;
- return -1;
- }
-
- // Create a model using the API directly and serialize it to a file
- if (!wts_name.empty()) {
- serialize_engine(kBatchSize, gd, gw, wts_name, engine_name);
- return 0;
- }
-
- // Deserialize the engine from file
- IRuntime* runtime = nullptr;
- ICudaEngine* engine = nullptr;
- IExecutionContext* context = nullptr;
- deserialize_engine(engine_name, &runtime, &engine, &context);
- cudaStream_t stream;
- CUDA_CHECK(cudaStreamCreate(&stream));
-
- // Init CUDA preprocessing
- cuda_preprocess_init(kMaxInputImageSize);
-
- // Prepare cpu and gpu buffers
- float* gpu_buffers[3];
- float* cpu_output_buffer1 = nullptr;
- float* cpu_output_buffer2 = nullptr;
- prepare_buffers(engine, &gpu_buffers[0], &gpu_buffers[1], &gpu_buffers[2], &cpu_output_buffer1, &cpu_output_buffer2);
-
- // Read images from directory
- std::vector<std::string> file_names;
- if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
- std::cerr << "read_files_in_dir failed." << std::endl;
- return -1;
- }
-
- // Read the txt file for classnames
- std::ifstream labels_file(labels_filename, std::ios::binary);
- if (!labels_file.good()) {
- std::cerr << "read " << labels_filename << " error!" << std::endl;
- return -1;
- }
- std::unordered_map<int, std::string> labels_map;
- read_labels(labels_filename, labels_map);
- assert(kNumClass == labels_map.size());
-
- // batch predict
- for (size_t i = 0; i < file_names.size(); i += kBatchSize) {
- // Get a batch of images
- std::vector<cv::Mat> img_batch;
- std::vector<std::string> img_name_batch;
- for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) {
- cv::Mat img = cv::imread(img_dir + "/" + file_names[j]);
- img_batch.push_back(img);
- img_name_batch.push_back(file_names[j]);
- }
-
- // Preprocess
- cuda_batch_preprocess(img_batch, gpu_buffers[0], kInputW, kInputH, stream);
-
- // Run inference
- auto start = std::chrono::system_clock::now();
- infer(*context, stream, (void**)gpu_buffers, cpu_output_buffer1, cpu_output_buffer2, kBatchSize);
- auto end = std::chrono::system_clock::now();
- std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
-
- // NMS
- std::vector<std::vector<Detection>> res_batch;
- batch_nms(res_batch, cpu_output_buffer1, img_batch.size(), kOutputSize1, kConfThresh, kNmsThresh);
-
- // Draw result and save image
- for (size_t b = 0; b < img_name_batch.size(); b++) {
- auto& res = res_batch[b];
- cv::Mat img = img_batch[b];
-
- auto masks = process_mask(&cpu_output_buffer2[b * kOutputSize2], kOutputSize2, res);
- draw_mask_bbox(img, res, masks, labels_map);
- cv::imwrite("_" + img_name_batch[b], img);
- }
- }
-
- // Release stream and buffers
- cudaStreamDestroy(stream);
- CUDA_CHECK(cudaFree(gpu_buffers[0]));
- CUDA_CHECK(cudaFree(gpu_buffers[1]));
- CUDA_CHECK(cudaFree(gpu_buffers[2]));
- delete[] cpu_output_buffer1;
- delete[] cpu_output_buffer2;
- cuda_preprocess_destroy();
- // Destroy the engine
- context->destroy();
- engine->destroy();
- runtime->destroy();
-
- return 0;
- }
-
|