|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- """Run inference with a YOLOv5 model on images, videos, directories, streams
-
- Usage:
- $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
- """
-
- import argparse
- import sys
- import time
- from pathlib import Path
-
- import cv2
- import torch
- import torch.backends.cudnn as cudnn
-
- FILE = Path(__file__).absolute()
- sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
-
- from models.experimental import attempt_load
- from utils.datasets import LoadStreams, LoadImages
- from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
- apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
- from utils.plots import colors, plot_one_box
- from utils.torch_utils import select_device, load_classifier, time_sync
-
-
- @torch.no_grad()
- def run(weights='yolov5s.pt', # model.pt path(s)
- source='data/images', # file/dir/URL/glob, 0 for webcam
- imgsz=640, # inference size (pixels)
- conf_thres=0.25, # confidence threshold
- iou_thres=0.45, # NMS IOU threshold
- max_det=1000, # maximum detections per image
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- view_img=False, # show results
- save_txt=False, # save results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_crop=False, # save cropped prediction boxes
- nosave=False, # do not save images/videos
- classes=None, # filter by class: --class 0, or --class 0 2 3
- agnostic_nms=False, # class-agnostic NMS
- augment=False, # augmented inference
- visualize=False, # visualize features
- update=False, # update all models
- project='runs/detect', # save results to project/name
- name='exp', # save results to project/name
- exist_ok=False, # existing project/name ok, do not increment
- line_thickness=3, # bounding box thickness (pixels)
- hide_labels=False, # hide labels
- hide_conf=False, # hide confidences
- half=False, # use FP16 half-precision inference
- ):
- save_img = not nosave and not source.endswith('.txt') # save inference images
- webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
- ('rtsp://', 'rtmp://', 'http://', 'https://'))
-
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
-
- # Initialize
- set_logging()
- device = select_device(device)
- half &= device.type != 'cpu' # half precision only supported on CUDA
-
- # Load model
- w = weights[0] if isinstance(weights, list) else weights
- classify, pt, onnx = False, w.endswith('.pt'), w.endswith('.onnx') # inference type
- stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
- if pt:
- model = attempt_load(weights, map_location=device) # load FP32 model
- stride = int(model.stride.max()) # model stride
- names = model.module.names if hasattr(model, 'module') else model.names # get class names
- if half:
- model.half() # to FP16
- if classify: # second-stage classifier
- modelc = load_classifier(name='resnet50', n=2) # initialize
- modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
- elif onnx:
- check_requirements(('onnx', 'onnxruntime'))
- import onnxruntime
- session = onnxruntime.InferenceSession(w, None)
- imgsz = check_img_size(imgsz, s=stride) # check image size
-
- # Dataloader
- if webcam:
- view_img = check_imshow()
- cudnn.benchmark = True # set True to speed up constant image size inference
- dataset = LoadStreams(source, img_size=imgsz, stride=stride)
- bs = len(dataset) # batch_size
- else:
- dataset = LoadImages(source, img_size=imgsz, stride=stride)
- bs = 1 # batch_size
- vid_path, vid_writer = [None] * bs, [None] * bs
-
- # Run inference
- if pt and device.type != 'cpu':
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
- t0 = time.time()
- for path, img, im0s, vid_cap in dataset:
- if pt:
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- elif onnx:
- img = img.astype('float32')
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if len(img.shape) == 3:
- img = img[None] # expand for batch dim
-
- # Inference
- t1 = time_sync()
- if pt:
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
- pred = model(img, augment=augment, visualize=visualize)[0]
- elif onnx:
- pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
-
- # NMS
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
- t2 = time_sync()
-
- # Second-stage classifier (optional)
- if classify:
- pred = apply_classifier(pred, modelc, img, im0s)
-
- # Process predictions
- for i, det in enumerate(pred): # detections per image
- if webcam: # batch_size >= 1
- p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
- else:
- p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
-
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # img.jpg
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
- s += '%gx%g ' % img.shape[2:] # print string
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
- imc = im0.copy() if save_crop else im0 # for save_crop
- if len(det):
- # Rescale boxes from img_size to im0 size
- det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
-
- # Print results
- for c in det[:, -1].unique():
- n = (det[:, -1] == c).sum() # detections per class
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
-
- # Write results
- for *xyxy, conf, cls in reversed(det):
- if save_txt: # Write to file
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(txt_path + '.txt', 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
-
- if save_img or save_crop or view_img: # Add bbox to image
- c = int(cls) # integer class
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
- plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
- if save_crop:
- save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
-
- # Print time (inference + NMS)
- print(f'{s}Done. ({t2 - t1:.3f}s)')
-
- # Stream results
- if view_img:
- cv2.imshow(str(p), im0)
- cv2.waitKey(1) # 1 millisecond
-
- # Save results (image with detections)
- if save_img:
- if dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if vid_path[i] != save_path: # new video
- vid_path[i] = save_path
- if isinstance(vid_writer[i], cv2.VideoWriter):
- vid_writer[i].release() # release previous video writer
- if vid_cap: # video
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- save_path += '.mp4'
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
- vid_writer[i].write(im0)
-
- if save_txt or save_img:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- print(f"Results saved to {colorstr('bold', save_dir)}{s}")
-
- if update:
- strip_optimizer(weights) # update model (to fix SourceChangeWarning)
-
- print(f'Done. ({time.time() - t0:.3f}s)')
-
-
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', nargs='+', type=str, default='weights/smogfire_20230105.pt', help='model.pt path(s)')
- #parser.add_argument('--source', type=str, default='image', help='file/dir/URL/glob, 0 for webcam')
- parser.add_argument('--source', type=str, default='/home/thsw/WJ/nyh_submission/0_smogfire/image_for_test', help='file/dir/URL/glob, 0 for webcam')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
- parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
- parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
- parser.add_argument('--device', default='0,1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--view-img', action='store_true', help='show results')
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
- parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
- parser.add_argument('--augment', action='store_true', help='augmented inference')
- parser.add_argument('--visualize', action='store_true', help='visualize features')
- parser.add_argument('--update', action='store_true', help='update all models')
- parser.add_argument('--project', default='runs/detect', help='save results to project/name')
- parser.add_argument('--name', default='exp', help='save results to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
- parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
- parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- opt = parser.parse_args()
- return opt
-
-
- def main(opt):
- print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
- check_requirements(exclude=('tensorboard', 'thop'))
- run(**vars(opt))
-
-
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|