#include "cuda_utils.h" #include "logging.h" #include "utils.h" #include "preprocess.h" #include "postprocess.h" #include "model.h" #include #include #include using namespace nvinfer1; static Logger gLogger; const static int kOutputSize = kMaxNumOutputBbox * sizeof(Detection) / sizeof(float) + 1; bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, bool& is_p6, float& gd, float& gw, std::string& img_dir) { if (argc < 4) return false; if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) { wts = std::string(argv[2]); engine = std::string(argv[3]); auto net = std::string(argv[4]); if (net[0] == 'n') { gd = 0.33; gw = 0.25; } else if (net[0] == 's') { gd = 0.33; gw = 0.50; } else if (net[0] == 'm') { gd = 0.67; gw = 0.75; } else if (net[0] == 'l') { gd = 1.0; gw = 1.0; } else if (net[0] == 'x') { gd = 1.33; gw = 1.25; } else if (net[0] == 'c' && argc == 7) { gd = atof(argv[5]); gw = atof(argv[6]); } else { return false; } if (net.size() == 2 && net[1] == '6') { is_p6 = true; } } else if (std::string(argv[1]) == "-d" && argc == 4) { engine = std::string(argv[2]); img_dir = std::string(argv[3]); } else { return false; } return true; } void prepare_buffers(ICudaEngine* engine, float** gpu_input_buffer, float** gpu_output_buffer, float** cpu_output_buffer) { assert(engine->getNbBindings() == 2); // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(kInputTensorName); const int outputIndex = engine->getBindingIndex(kOutputTensorName); assert(inputIndex == 0); assert(outputIndex == 1); // Create GPU buffers on device CUDA_CHECK(cudaMalloc((void**)gpu_input_buffer, kBatchSize * 3 * kInputH * kInputW * sizeof(float))); CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer, kBatchSize * kOutputSize * sizeof(float))); *cpu_output_buffer = new float[kBatchSize * kOutputSize]; } void infer(IExecutionContext& context, cudaStream_t& stream, void** gpu_buffers, float* output, int batchsize) { context.enqueue(batchsize, gpu_buffers, stream, nullptr); CUDA_CHECK(cudaMemcpyAsync(output, gpu_buffers[1], batchsize * kOutputSize * sizeof(float), cudaMemcpyDeviceToHost, stream)); cudaStreamSynchronize(stream); } void serialize_engine(unsigned int max_batchsize, bool& is_p6, float& gd, float& gw, std::string& wts_name, std::string& engine_name) { // Create builder IBuilder* builder = createInferBuilder(gLogger); IBuilderConfig* config = builder->createBuilderConfig(); // Create model to populate the network, then set the outputs and create an engine ICudaEngine *engine = nullptr; if (is_p6) { engine = build_det_p6_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name); } else { engine = build_det_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name); } assert(engine != nullptr); // Serialize the engine IHostMemory* serialized_engine = engine->serialize(); assert(serialized_engine != nullptr); // Save engine to file std::ofstream p(engine_name, std::ios::binary); if (!p) { std::cerr << "Could not open plan output file" << std::endl; assert(false); } p.write(reinterpret_cast(serialized_engine->data()), serialized_engine->size()); // Close everything down engine->destroy(); config->destroy(); serialized_engine->destroy(); builder->destroy(); } void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine, IExecutionContext** context) { std::ifstream file(engine_name, std::ios::binary); if (!file.good()) { std::cerr << "read " << engine_name << " error!" << std::endl; assert(false); } size_t size = 0; file.seekg(0, file.end); size = file.tellg(); file.seekg(0, file.beg); char* serialized_engine = new char[size]; assert(serialized_engine); file.read(serialized_engine, size); file.close(); *runtime = createInferRuntime(gLogger); assert(*runtime); *engine = (*runtime)->deserializeCudaEngine(serialized_engine, size); assert(*engine); *context = (*engine)->createExecutionContext(); assert(*context); delete[] serialized_engine; } int main(int argc, char** argv) { cudaSetDevice(kGpuId); std::string wts_name = ""; std::string engine_name = ""; bool is_p6 = false; float gd = 0.0f, gw = 0.0f; std::string img_dir; if (!parse_args(argc, argv, wts_name, engine_name, is_p6, gd, gw, img_dir)) { std::cerr << "arguments not right!" << std::endl; std::cerr << "./yolov5_det -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file" << std::endl; std::cerr << "./yolov5_det -d [.engine] ../images // deserialize plan file and run inference" << std::endl; return -1; } // Create a model using the API directly and serialize it to a file if (!wts_name.empty()) { serialize_engine(kBatchSize, is_p6, gd, gw, wts_name, engine_name); return 0; } // Deserialize the engine from file IRuntime* runtime = nullptr; ICudaEngine* engine = nullptr; IExecutionContext* context = nullptr; deserialize_engine(engine_name, &runtime, &engine, &context); cudaStream_t stream; CUDA_CHECK(cudaStreamCreate(&stream)); // Init CUDA preprocessing cuda_preprocess_init(kMaxInputImageSize); // Prepare cpu and gpu buffers float* gpu_buffers[2]; float* cpu_output_buffer = nullptr; prepare_buffers(engine, &gpu_buffers[0], &gpu_buffers[1], &cpu_output_buffer); // Read images from directory std::vector file_names; if (read_files_in_dir(img_dir.c_str(), file_names) < 0) { std::cerr << "read_files_in_dir failed." << std::endl; return -1; } // batch predict for (size_t i = 0; i < file_names.size(); i += kBatchSize) { // Get a batch of images std::vector img_batch; std::vector img_name_batch; for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) { cv::Mat img = cv::imread(img_dir + "/" + file_names[j]); img_batch.push_back(img); img_name_batch.push_back(file_names[j]); } // Preprocess cuda_batch_preprocess(img_batch, gpu_buffers[0], kInputW, kInputH, stream); // Run inference auto start = std::chrono::system_clock::now(); infer(*context, stream, (void**)gpu_buffers, cpu_output_buffer, kBatchSize); auto end = std::chrono::system_clock::now(); std::cout << "inference time: " << std::chrono::duration_cast(end - start).count() << "ms" << std::endl; // NMS std::vector> res_batch; batch_nms(res_batch, cpu_output_buffer, img_batch.size(), kOutputSize, kConfThresh, kNmsThresh); // Draw bounding boxes draw_bbox(img_batch, res_batch); // Save images for (size_t j = 0; j < img_batch.size(); j++) { cv::imwrite("_" + img_name_batch[j], img_batch[j]); } } // Release stream and buffers cudaStreamDestroy(stream); CUDA_CHECK(cudaFree(gpu_buffers[0])); CUDA_CHECK(cudaFree(gpu_buffers[1])); delete[] cpu_output_buffer; cuda_preprocess_destroy(); // Destroy the engine context->destroy(); engine->destroy(); runtime->destroy(); // Print histogram of the output distribution // std::cout << "\nOutput:\n\n"; // for (unsigned int i = 0; i < kOutputSize; i++) { // std::cout << prob[i] << ", "; // if (i % 10 == 0) std::cout << std::endl; // } // std::cout << std::endl; return 0; }