#include "cuda_utils.h" #include "logging.h" #include "utils.h" #include "model.h" #include "config.h" #include "calibrator.h" #include #include #include #include #include using namespace nvinfer1; static Logger gLogger; const static int kOutputSize = kClsNumClass; void batch_preprocess(std::vector& imgs, float* output) { for (size_t b = 0; b < imgs.size(); b++) { cv::Mat img; // cv::resize(imgs[b], img, cv::Size(kClsInputW, kClsInputH)); img = preprocess_img(imgs[b], kClsInputW, kClsInputH); int i = 0; for (int row = 0; row < img.rows; ++row) { uchar* uc_pixel = img.data + row * img.step; for (int col = 0; col < img.cols; ++col) { output[b * 3 * img.rows * img.cols + i] = ((float)uc_pixel[2] / 255.0 - 0.485) / 0.229; // R - 0.485 output[b * 3 * img.rows * img.cols + i + img.rows * img.cols] = ((float)uc_pixel[1] / 255.0 - 0.456) / 0.224; output[b * 3 * img.rows * img.cols + i + 2 * img.rows * img.cols] = ((float)uc_pixel[0] / 255.0 - 0.406) / 0.225; uc_pixel += 3; ++i; } } } } std::vector softmax(float *prob, int n) { std::vector res; float sum = 0.0f; float t; for (int i = 0; i < n; i++) { t = expf(prob[i]); res.push_back(t); sum += t; } for (int i = 0; i < n; i++) { res[i] /= sum; } return res; } std::vector topk(const std::vector& vec, int k) { std::vector topk_index; std::vector vec_index(vec.size()); std::iota(vec_index.begin(), vec_index.end(), 0); std::sort(vec_index.begin(), vec_index.end(), [&vec](size_t index_1, size_t index_2) { return vec[index_1] > vec[index_2]; }); int k_num = std::min(vec.size(), k); for (int i = 0; i < k_num; ++i) { topk_index.push_back(vec_index[i]); } return topk_index; } std::vector read_classes(std::string file_name) { std::vector classes; std::ifstream ifs(file_name, std::ios::in); if (!ifs.is_open()) { std::cerr << file_name << " is not found, pls refer to README and download it." << std::endl; assert(0); } std::string s; while (std::getline(ifs, s)) { classes.push_back(s); } ifs.close(); return classes; } bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir) { if (argc < 4) return false; if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) { wts = std::string(argv[2]); engine = std::string(argv[3]); auto net = std::string(argv[4]); if (net[0] == 'n') { gd = 0.33; gw = 0.25; } else if (net[0] == 's') { gd = 0.33; gw = 0.50; } else if (net[0] == 'm') { gd = 0.67; gw = 0.75; } else if (net[0] == 'l') { gd = 1.0; gw = 1.0; } else if (net[0] == 'x') { gd = 1.33; gw = 1.25; } else if (net[0] == 'c' && argc == 7) { gd = atof(argv[5]); gw = atof(argv[6]); } else { return false; } } else if (std::string(argv[1]) == "-d" && argc == 4) { engine = std::string(argv[2]); img_dir = std::string(argv[3]); } else { return false; } return true; } void prepare_buffers(ICudaEngine* engine, float** gpu_input_buffer, float** gpu_output_buffer, float** cpu_input_buffer, float** cpu_output_buffer) { assert(engine->getNbBindings() == 2); // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(kInputTensorName); const int outputIndex = engine->getBindingIndex(kOutputTensorName); assert(inputIndex == 0); assert(outputIndex == 1); // Create GPU buffers on device CUDA_CHECK(cudaMalloc((void**)gpu_input_buffer, kBatchSize * 3 * kClsInputH * kClsInputW * sizeof(float))); CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer, kBatchSize * kOutputSize * sizeof(float))); *cpu_input_buffer = new float[kBatchSize * 3 * kClsInputH * kClsInputW]; *cpu_output_buffer = new float[kBatchSize * kOutputSize]; } void infer(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* input, float* output, int batchSize) { CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * kClsInputH * kClsInputW * sizeof(float), cudaMemcpyHostToDevice, stream)); context.enqueue(batchSize, buffers, stream, nullptr); CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * kOutputSize * sizeof(float), cudaMemcpyDeviceToHost, stream)); cudaStreamSynchronize(stream); } void serialize_engine(unsigned int max_batchsize, float& gd, float& gw, std::string& wts_name, std::string& engine_name) { // Create builder IBuilder* builder = createInferBuilder(gLogger); IBuilderConfig* config = builder->createBuilderConfig(); // Create model to populate the network, then set the outputs and create an engine ICudaEngine *engine = nullptr; engine = build_cls_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name); assert(engine != nullptr); // Serialize the engine IHostMemory* serialized_engine = engine->serialize(); assert(serialized_engine != nullptr); // Save engine to file std::ofstream p(engine_name, std::ios::binary); if (!p) { std::cerr << "Could not open plan output file" << std::endl; assert(false); } p.write(reinterpret_cast(serialized_engine->data()), serialized_engine->size()); // Close everything down engine->destroy(); config->destroy(); serialized_engine->destroy(); builder->destroy(); } void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine, IExecutionContext** context) { std::ifstream file(engine_name, std::ios::binary); if (!file.good()) { std::cerr << "read " << engine_name << " error!" << std::endl; assert(false); } size_t size = 0; file.seekg(0, file.end); size = file.tellg(); file.seekg(0, file.beg); char* serialized_engine = new char[size]; assert(serialized_engine); file.read(serialized_engine, size); file.close(); *runtime = createInferRuntime(gLogger); assert(*runtime); *engine = (*runtime)->deserializeCudaEngine(serialized_engine, size); assert(*engine); *context = (*engine)->createExecutionContext(); assert(*context); delete[] serialized_engine; } int main(int argc, char** argv) { cudaSetDevice(kGpuId); std::string wts_name = ""; std::string engine_name = ""; float gd = 0.0f, gw = 0.0f; std::string img_dir; if (!parse_args(argc, argv, wts_name, engine_name, gd, gw, img_dir)) { std::cerr << "arguments not right!" << std::endl; std::cerr << "./yolov5_cls -s [.wts] [.engine] [n/s/m/l/x or c gd gw] // serialize model to plan file" << std::endl; std::cerr << "./yolov5_cls -d [.engine] ../images // deserialize plan file and run inference" << std::endl; return -1; } // Create a model using the API directly and serialize it to a file if (!wts_name.empty()) { serialize_engine(kBatchSize, gd, gw, wts_name, engine_name); return 0; } // Deserialize the engine from file IRuntime* runtime = nullptr; ICudaEngine* engine = nullptr; IExecutionContext* context = nullptr; deserialize_engine(engine_name, &runtime, &engine, &context); cudaStream_t stream; CUDA_CHECK(cudaStreamCreate(&stream)); // Prepare cpu and gpu buffers float* gpu_buffers[2]; float* cpu_input_buffer = nullptr; float* cpu_output_buffer = nullptr; prepare_buffers(engine, &gpu_buffers[0], &gpu_buffers[1], &cpu_input_buffer, &cpu_output_buffer); // Read images from directory std::vector file_names; if (read_files_in_dir(img_dir.c_str(), file_names) < 0) { std::cerr << "read_files_in_dir failed." << std::endl; return -1; } // Read imagenet labels auto classes = read_classes("imagenet_classes.txt"); // batch predict for (size_t i = 0; i < file_names.size(); i += kBatchSize) { // Get a batch of images std::vector img_batch; std::vector img_name_batch; for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) { cv::Mat img = cv::imread(img_dir + "/" + file_names[j]); img_batch.push_back(img); img_name_batch.push_back(file_names[j]); } // Preprocess batch_preprocess(img_batch, cpu_input_buffer); // Run inference auto start = std::chrono::system_clock::now(); infer(*context, stream, (void**)gpu_buffers, cpu_input_buffer, cpu_output_buffer, kBatchSize); auto end = std::chrono::system_clock::now(); std::cout << "inference time: " << std::chrono::duration_cast(end - start).count() << "ms" << std::endl; // Postprocess and get top-k result for (size_t b = 0; b < img_name_batch.size(); b++) { float* p = &cpu_output_buffer[b * kOutputSize]; auto res = softmax(p, kOutputSize); auto topk_idx = topk(res, 3); std::cout << img_name_batch[b] << std::endl; for (auto idx: topk_idx) { std::cout << " " << classes[idx] << " " << res[idx] << std::endl; } } } // Release stream and buffers cudaStreamDestroy(stream); CUDA_CHECK(cudaFree(gpu_buffers[0])); CUDA_CHECK(cudaFree(gpu_buffers[1])); delete[] cpu_input_buffer; delete[] cpu_output_buffer; // Destroy the engine context->destroy(); engine->destroy(); runtime->destroy(); return 0; }