""" An example that uses TensorRT's Python api to make inferences. """ import ctypes import os import shutil import random import sys import threading import time import cv2 import numpy as np import pycuda.autoinit import pycuda.driver as cuda import tensorrt as trt CONF_THRESH = 0.5 IOU_THRESHOLD = 0.4 def get_img_path_batches(batch_size, img_dir): ret = [] batch = [] for root, dirs, files in os.walk(img_dir): for name in files: if len(batch) == batch_size: ret.append(batch) batch = [] batch.append(os.path.join(root, name)) if len(batch) > 0: ret.append(batch) return ret def plot_one_box(x, img, color=None, label=None, line_thickness=None): """ description: Plots one bounding box on image img, this function comes from YoLov5 project. param: x: a box likes [x1,y1,x2,y2] img: a opencv image object color: color to draw rectangle, such as (0,255,0) label: str line_thickness: int return: no return """ tl = ( line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 ) # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) class YoLov5TRT(object): """ description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops. """ def __init__(self, engine_file_path): # Create a Context on this device, self.ctx = cuda.Device(0).make_context() stream = cuda.Stream() TRT_LOGGER = trt.Logger(trt.Logger.INFO) runtime = trt.Runtime(TRT_LOGGER) # Deserialize the engine from file with open(engine_file_path, "rb") as f: engine = runtime.deserialize_cuda_engine(f.read()) context = engine.create_execution_context() host_inputs = [] cuda_inputs = [] host_outputs = [] cuda_outputs = [] bindings = [] for binding in engine: print('bingding:', binding, engine.get_binding_shape(binding)) size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) cuda_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(cuda_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): self.input_w = engine.get_binding_shape(binding)[-1] self.input_h = engine.get_binding_shape(binding)[-2] host_inputs.append(host_mem) cuda_inputs.append(cuda_mem) else: host_outputs.append(host_mem) cuda_outputs.append(cuda_mem) # Store self.stream = stream self.context = context self.engine = engine self.host_inputs = host_inputs self.cuda_inputs = cuda_inputs self.host_outputs = host_outputs self.cuda_outputs = cuda_outputs self.bindings = bindings self.batch_size = engine.max_batch_size # Data length self.det_output_length = host_outputs[0].shape[0] self.mask_output_length = host_outputs[1].shape[0] self.seg_w = int(self.input_w / 4) self.seg_h = int(self.input_h / 4) self.seg_c = int(self.mask_output_length / (self.seg_w * self.seg_w)) self.det_row_output_length = self.seg_c + 6 # Draw mask self.colors_obj = Colors() def infer(self, raw_image_generator): threading.Thread.__init__(self) # Make self the active context, pushing it on top of the context stack. self.ctx.push() # Restore stream = self.stream context = self.context engine = self.engine host_inputs = self.host_inputs cuda_inputs = self.cuda_inputs host_outputs = self.host_outputs cuda_outputs = self.cuda_outputs bindings = self.bindings # Do image preprocess batch_image_raw = [] batch_origin_h = [] batch_origin_w = [] batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w]) for i, image_raw in enumerate(raw_image_generator): input_image, image_raw, origin_h, origin_w = self.preprocess_image(image_raw) batch_image_raw.append(image_raw) batch_origin_h.append(origin_h) batch_origin_w.append(origin_w) np.copyto(batch_input_image[i], input_image) batch_input_image = np.ascontiguousarray(batch_input_image) # Copy input image to host buffer np.copyto(host_inputs[0], batch_input_image.ravel()) start = time.time() # Transfer input data to the GPU. cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream) # Run inference. context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream) cuda.memcpy_dtoh_async(host_outputs[1], cuda_outputs[1], stream) # Synchronize the stream stream.synchronize() end = time.time() # Remove any context from the top of the context stack, deactivating it. self.ctx.pop() # Here we use the first row of output in that batch_size = 1 output_bbox = host_outputs[0] output_proto_mask = host_outputs[1] # Do postprocess for i in range(self.batch_size): result_boxes, result_scores, result_classid, result_proto_coef = self.post_process( output_bbox[i * self.det_output_length: (i + 1) * self.det_output_length], batch_origin_h[i], batch_origin_w[i] ) if result_proto_coef.shape[0] == 0: continue result_masks = self.process_mask(output_proto_mask, result_proto_coef, result_boxes, batch_origin_h[i], batch_origin_w[i]) # Draw masks on the original image self.draw_mask(result_masks, colors_=[self.colors_obj(x, True) for x in result_classid],im_src=batch_image_raw[i]) # Draw rectangles and labels on the original image for j in range(len(result_boxes)): box = result_boxes[j] plot_one_box( box, batch_image_raw[i], label="{}:{:.2f}".format( categories[int(result_classid[j])], result_scores[j] ), ) return batch_image_raw, end - start def destroy(self): # Remove any context from the top of the context stack, deactivating it. self.ctx.pop() def get_raw_image(self, image_path_batch): """ description: Read an image from image path """ for img_path in image_path_batch: yield cv2.imread(img_path) def get_raw_image_zeros(self, image_path_batch=None): """ description: Ready data for warmup """ for _ in range(self.batch_size): yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8) def preprocess_image(self, raw_bgr_image): """ description: Convert BGR image to RGB, resize and pad it to target size, normalize to [0,1], transform to NCHW format. param: input_image_path: str, image path return: image: the processed image image_raw: the original image h: original height w: original width """ image_raw = raw_bgr_image h, w, c = image_raw.shape image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) # Calculate widht and height and paddings r_w = self.input_w / w r_h = self.input_h / h if r_h > r_w: tw = self.input_w th = int(r_w * h) tx1 = tx2 = 0 ty1 = int((self.input_h - th) / 2) ty2 = self.input_h - th - ty1 else: tw = int(r_h * w) th = self.input_h tx1 = int((self.input_w - tw) / 2) tx2 = self.input_w - tw - tx1 ty1 = ty2 = 0 # Resize the image with long side while maintaining ratio image = cv2.resize(image, (tw, th)) # Pad the short side with (128,128,128) image = cv2.copyMakeBorder( image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, None, (128, 128, 128) ) image = image.astype(np.float32) # Normalize to [0,1] image /= 255.0 # HWC to CHW format: image = np.transpose(image, [2, 0, 1]) # CHW to NCHW format image = np.expand_dims(image, axis=0) # Convert the image to row-major order, also known as "C order": image = np.ascontiguousarray(image) return image, image_raw, h, w def xywh2xyxy(self, origin_h, origin_w, x): """ description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right param: origin_h: height of original image origin_w: width of original image x: A boxes numpy, each row is a box [center_x, center_y, w, h] return: y: A boxes numpy, each row is a box [x1, y1, x2, y2] """ y = np.zeros_like(x) r_w = self.input_w / origin_w r_h = self.input_h / origin_h if r_h > r_w: y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2 y /= r_w else: y[:, 0] = x[:, 0] - x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 y /= r_h return y def post_process(self, output_boxes, origin_h, origin_w): """ description: postprocess the prediction param: output: A numpy likes [num_boxes, cx, cy, w, h, conf, cls_id, mask[32], cx, cy, w, h, conf, cls_id, mask[32] ...] origin_h: height of original image origin_w: width of original image return: result_boxes: finally boxes, a boxes numpy, each row is a box [x1, y1, x2, y2] result_scores: finally scores, a numpy, each element is the score correspoing to box result_classid: finally classid, a numpy, each element is the classid correspoing to box """ # Get the num of boxes detected num = int(output_boxes[0]) # Reshape to a two dimentional ndarray pred = np.reshape(output_boxes[1:], (-1, self.det_row_output_length))[:num, :] # Do nms boxes = self.non_max_suppression(pred, origin_h, origin_w, conf_thres=CONF_THRESH, nms_thres=IOU_THRESHOLD) result_boxes = boxes[:, :4] if len(boxes) else np.array([]) result_scores = boxes[:, 4] if len(boxes) else np.array([]) result_classid = boxes[:, 5] if len(boxes) else np.array([]) result_proto_coef = boxes[:, 6:] if len(boxes) else np.array([]) return result_boxes, result_scores, result_classid, result_proto_coef def bbox_iou(self, box1, box2, x1y1x2y2=True): """ description: compute the IoU of two bounding boxes param: box1: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h)) box2: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h)) x1y1x2y2: select the coordinate format return: iou: computed iou """ if not x1y1x2y2: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 else: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] # Get the coordinates of the intersection rectangle inter_rect_x1 = np.maximum(b1_x1, b2_x1) inter_rect_y1 = np.maximum(b1_y1, b2_y1) inter_rect_x2 = np.minimum(b1_x2, b2_x2) inter_rect_y2 = np.minimum(b1_y2, b2_y2) # Intersection area inter_area = np.clip(inter_rect_x2 - inter_rect_x1 + 1, 0, None) * \ np.clip(inter_rect_y2 - inter_rect_y1 + 1, 0, None) # Union Area b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1) iou = inter_area / (b1_area + b2_area - inter_area + 1e-16) return iou def non_max_suppression(self, prediction, origin_h, origin_w, conf_thres=0.5, nms_thres=0.4): """ description: Removes detections with lower object confidence score than 'conf_thres' and performs Non-Maximum Suppression to further filter detections. param: prediction: detections, (x1, y1, x2, y2, conf, cls_id, mask coefficients[32]) origin_h: original image height origin_w: original image width conf_thres: a confidence threshold to filter detections nms_thres: a iou threshold to filter detections return: boxes: output after nms with the shape (x1, y1, x2, y2, conf, cls_id) """ # Get the boxes that score > CONF_THRESH boxes = prediction[prediction[:, 4] >= conf_thres] # Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2] boxes[:, :4] = self.xywh2xyxy(origin_h, origin_w, boxes[:, :4]) # clip the coordinates boxes[:, 0] = np.clip(boxes[:, 0], 0, origin_w - 1) boxes[:, 2] = np.clip(boxes[:, 2], 0, origin_w - 1) boxes[:, 1] = np.clip(boxes[:, 1], 0, origin_h - 1) boxes[:, 3] = np.clip(boxes[:, 3], 0, origin_h - 1) # Object confidence confs = boxes[:, 4] # Sort by the confs boxes = boxes[np.argsort(-confs)] # Perform non-maximum suppression keep_boxes = [] while boxes.shape[0]: large_overlap = self.bbox_iou(np.expand_dims(boxes[0, :4], 0), boxes[:, :4]) > nms_thres label_match = boxes[0, 5] == boxes[:, 5] # Indices of boxes with lower confidence scores, large IOUs and matching labels invalid = large_overlap & label_match keep_boxes += [boxes[0]] boxes = boxes[~invalid] boxes = np.stack(keep_boxes, 0) if len(keep_boxes) else np.array([]) return boxes def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def scale_mask(self, mask, ih, iw): mask = cv2.resize(mask, (self.input_w, self.input_h)) r_w = self.input_w / (iw * 1.0) r_h = self.input_h / (ih * 1.0) if r_h > r_w: w = self.input_w h = int(r_w * ih) x = 0 y = int((self.input_h - h) / 2) else: w = int(r_h * iw) h = self.input_h x = int((self.input_w - w) / 2) y = 0 crop = mask[y:y+h, x:x+w] crop = cv2.resize(crop, (iw, ih)) return crop def process_mask(self, output_proto_mask, result_proto_coef, result_boxes, ih, iw): """ description: Mask pred by yolov5 instance segmentation , param: output_proto_mask: prototype mask e.g. (32, 160, 160) for 640x640 input result_proto_coef: prototype mask coefficients (n, 32), n represents n results result_boxes : ih: rows of original image iw: cols of original image return: mask_result: (n, ih, iw) """ result_proto_masks = output_proto_mask.reshape(self.seg_c, self.seg_h, self.seg_w) c, mh, mw = result_proto_masks.shape masks = self.sigmoid((result_proto_coef @ result_proto_masks.astype(np.float32).reshape(c, -1))).reshape(-1, mh, mw) mask_result = [] for mask, box in zip(masks, result_boxes): mask_s = np.zeros((ih, iw)) crop_mask = self.scale_mask(mask, ih, iw) x1 = int(box[0]) y1 = int(box[1]) x2 = int(box[2]) y2 = int(box[3]) crop = crop_mask[y1:y2, x1:x2] crop = np.where(crop >= 0.5, 1, 0) crop = crop.astype(np.uint8) mask_s[y1:y2, x1:x2] = crop mask_result.append(mask_s) mask_result = np.array(mask_result) return mask_result def draw_mask(self, masks, colors_, im_src, alpha=0.5): """ description: Draw mask on image , param: masks : result_mask colors_: color to draw mask im_src : original image alpha : scale between original image and mask return: no return """ if len(masks) == 0: return masks = np.asarray(masks, dtype=np.uint8) masks = np.ascontiguousarray(masks.transpose(1, 2, 0)) masks = np.asarray(masks, dtype=np.float32) colors_ = np.asarray(colors_, dtype=np.float32) s = masks.sum(2, keepdims=True).clip(0, 1) masks = (masks @ colors_).clip(0, 255) im_src[:] = masks * alpha + im_src * (1 - s * alpha) class inferThread(threading.Thread): def __init__(self, yolov5_wrapper, image_path_batch): threading.Thread.__init__(self) self.yolov5_wrapper = yolov5_wrapper self.image_path_batch = image_path_batch def run(self): batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image(self.image_path_batch)) for i, img_path in enumerate(self.image_path_batch): parent, filename = os.path.split(img_path) save_name = os.path.join('output', filename) # Save image cv2.imwrite(save_name, batch_image_raw[i]) print('input->{}, time->{:.2f}ms, saving into output/'.format(self.image_path_batch, use_time * 1000)) class warmUpThread(threading.Thread): def __init__(self, yolov5_wrapper): threading.Thread.__init__(self) self.yolov5_wrapper = yolov5_wrapper def run(self): batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image_zeros()) print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000)) class Colors: def __init__(self): hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') self.palette = [self.hex2rgb(f'#{c}') for c in hexs] self.n = len(self.palette) def __call__(self, i, bgr=False): c = self.palette[int(i) % self.n] return (c[2], c[1], c[0]) if bgr else c @staticmethod def hex2rgb(h): # rgb order (PIL) return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) if __name__ == "__main__": # load custom plugin and engine PLUGIN_LIBRARY = "build/libmyplugins.so" engine_file_path = "build/yolov5s-seg.engine" if len(sys.argv) > 1: engine_file_path = sys.argv[1] if len(sys.argv) > 2: PLUGIN_LIBRARY = sys.argv[2] ctypes.CDLL(PLUGIN_LIBRARY) # load coco labels categories = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] if os.path.exists('output/'): shutil.rmtree('output/') os.makedirs('output/') # a YoLov5TRT instance yolov5_wrapper = YoLov5TRT(engine_file_path) try: print('batch size is', yolov5_wrapper.batch_size) image_dir = "images/" image_path_batches = get_img_path_batches(yolov5_wrapper.batch_size, image_dir) for i in range(10): # create a new thread to do warm_up thread1 = warmUpThread(yolov5_wrapper) thread1.start() thread1.join() for batch in image_path_batches: # create a new thread to do inference thread1 = inferThread(yolov5_wrapper, batch) thread1.start() thread1.join() finally: # destroy the instance yolov5_wrapper.destroy()