TensorRT转化代码
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

59 lines
1.7KB

  1. # Parameters
  2. nc: 80 # number of classes
  3. depth_multiple: 0.33 # model depth multiple
  4. width_multiple: 0.50 # layer channel multiple
  5. anchors:
  6. - [19,27, 44,40, 38,94] # P3/8
  7. - [96,68, 86,152, 180,137] # P4/16
  8. - [140,301, 303,264, 238,542] # P5/32
  9. - [436,615, 739,380, 925,792] # P6/64
  10. # YOLOv5 backbone
  11. backbone:
  12. # [from, number, module, args]
  13. [[-1, 1, Focus, [64, 3]], # 0-P1/2
  14. [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
  15. [-1, 3, C3, [128]],
  16. [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
  17. [-1, 9, C3, [256]],
  18. [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
  19. [-1, 9, C3, [512]],
  20. [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
  21. [-1, 3, C3, [768]],
  22. [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
  23. [-1, 1, SPP, [1024, [3, 5, 7]]],
  24. [-1, 3, C3, [1024, False]], # 11
  25. ]
  26. # YOLOv5 head
  27. head:
  28. [[-1, 1, Conv, [768, 1, 1]],
  29. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  30. [[-1, 8], 1, Concat, [1]], # cat backbone P5
  31. [-1, 3, C3, [768, False]], # 15
  32. [-1, 1, Conv, [512, 1, 1]],
  33. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  34. [[-1, 6], 1, Concat, [1]], # cat backbone P4
  35. [-1, 3, C3, [512, False]], # 19
  36. [-1, 1, Conv, [256, 1, 1]],
  37. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  38. [[-1, 4], 1, Concat, [1]], # cat backbone P3
  39. [-1, 3, C3, [256, False]], # 23 (P3/8-small)
  40. [-1, 1, Conv, [256, 3, 2]],
  41. [[-1, 20], 1, Concat, [1]], # cat head P4
  42. [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
  43. [-1, 1, Conv, [512, 3, 2]],
  44. [[-1, 16], 1, Concat, [1]], # cat head P5
  45. [-1, 3, C3, [768, False]], # 29 (P5/32-large)
  46. [-1, 1, Conv, [768, 3, 2]],
  47. [[-1, 12], 1, Concat, [1]], # cat head P6
  48. [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
  49. [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
  50. ]