|
- # YOLOv5 dataset utils and dataloaders
-
- import glob
- import hashlib
- import json
- import logging
- import os
- import random
- import shutil
- import time
- from itertools import repeat
- from multiprocessing.pool import ThreadPool, Pool
- from pathlib import Path
- from threading import Thread
-
- import cv2
- import numpy as np
- import torch
- import torch.nn.functional as F
- import yaml
- from PIL import Image, ExifTags
- from torch.utils.data import Dataset
- from tqdm import tqdm
-
- from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
- from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \
- xyn2xy, segments2boxes, clean_str
- from utils.torch_utils import torch_distributed_zero_first
-
- # Parameters
- HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
- IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
- VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
- NUM_THREADS = min(8, os.cpu_count()) # number of multiprocessing threads
-
- # Get orientation exif tag
- for orientation in ExifTags.TAGS.keys():
- if ExifTags.TAGS[orientation] == 'Orientation':
- break
-
-
- def get_hash(paths):
- # Returns a single hash value of a list of paths (files or dirs)
- size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
- h = hashlib.md5(str(size).encode()) # hash sizes
- h.update(''.join(paths).encode()) # hash paths
- return h.hexdigest() # return hash
-
-
- def exif_size(img):
- # Returns exif-corrected PIL size
- s = img.size # (width, height)
- try:
- rotation = dict(img._getexif().items())[orientation]
- if rotation == 6: # rotation 270
- s = (s[1], s[0])
- elif rotation == 8: # rotation 90
- s = (s[1], s[0])
- except:
- pass
-
- return s
-
-
- def exif_transpose(image):
- """
- Transpose a PIL image accordingly if it has an EXIF Orientation tag.
- From https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py
-
- :param image: The image to transpose.
- :return: An image.
- """
- exif = image.getexif()
- orientation = exif.get(0x0112, 1) # default 1
- if orientation > 1:
- method = {2: Image.FLIP_LEFT_RIGHT,
- 3: Image.ROTATE_180,
- 4: Image.FLIP_TOP_BOTTOM,
- 5: Image.TRANSPOSE,
- 6: Image.ROTATE_270,
- 7: Image.TRANSVERSE,
- 8: Image.ROTATE_90,
- }.get(orientation)
- if method is not None:
- image = image.transpose(method)
- del exif[0x0112]
- image.info["exif"] = exif.tobytes()
- return image
-
-
- def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
- rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix=''):
- # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
- with torch_distributed_zero_first(rank):
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
- augment=augment, # augment images
- hyp=hyp, # augmentation hyperparameters
- rect=rect, # rectangular training
- cache_images=cache,
- single_cls=single_cls,
- stride=int(stride),
- pad=pad,
- image_weights=image_weights,
- prefix=prefix)
-
- batch_size = min(batch_size, len(dataset))
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, workers]) # number of workers
- sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
- loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
- # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
- dataloader = loader(dataset,
- batch_size=batch_size,
- num_workers=nw,
- sampler=sampler,
- pin_memory=True,
- collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
- return dataloader, dataset
-
-
- class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
- """ Dataloader that reuses workers
-
- Uses same syntax as vanilla DataLoader
- """
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
- self.iterator = super().__iter__()
-
- def __len__(self):
- return len(self.batch_sampler.sampler)
-
- def __iter__(self):
- for i in range(len(self)):
- yield next(self.iterator)
-
-
- class _RepeatSampler(object):
- """ Sampler that repeats forever
-
- Args:
- sampler (Sampler)
- """
-
- def __init__(self, sampler):
- self.sampler = sampler
-
- def __iter__(self):
- while True:
- yield from iter(self.sampler)
-
-
- class LoadImages: # for inference
- def __init__(self, path, img_size=640, stride=32):
- p = str(Path(path).absolute()) # os-agnostic absolute path
- if '*' in p:
- files = sorted(glob.glob(p, recursive=True)) # glob
- elif os.path.isdir(p):
- files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
- elif os.path.isfile(p):
- files = [p] # files
- else:
- raise Exception(f'ERROR: {p} does not exist')
-
- images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
- videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
- ni, nv = len(images), len(videos)
-
- self.img_size = img_size
- self.stride = stride
- self.files = images + videos
- self.nf = ni + nv # number of files
- self.video_flag = [False] * ni + [True] * nv
- self.mode = 'image'
- if any(videos):
- self.new_video(videos[0]) # new video
- else:
- self.cap = None
- assert self.nf > 0, f'No images or videos found in {p}. ' \
- f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
-
- def __iter__(self):
- self.count = 0
- return self
-
- def __next__(self):
- if self.count == self.nf:
- raise StopIteration
- path = self.files[self.count]
-
- if self.video_flag[self.count]:
- # Read video
- self.mode = 'video'
- ret_val, img0 = self.cap.read()
- if not ret_val:
- self.count += 1
- self.cap.release()
- if self.count == self.nf: # last video
- raise StopIteration
- else:
- path = self.files[self.count]
- self.new_video(path)
- ret_val, img0 = self.cap.read()
-
- self.frame += 1
- print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
-
- else:
- # Read image
- self.count += 1
- img0 = cv2.imread(path) # BGR
- assert img0 is not None, 'Image Not Found ' + path
- print(f'image {self.count}/{self.nf} {path}: ', end='')
-
- # Padded resize
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
-
- # Convert
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
- img = np.ascontiguousarray(img)
-
- return path, img, img0, self.cap
-
- def new_video(self, path):
- self.frame = 0
- self.cap = cv2.VideoCapture(path)
- self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
-
- def __len__(self):
- return self.nf # number of files
-
-
- class LoadWebcam: # for inference
- def __init__(self, pipe='0', img_size=640, stride=32):
- self.img_size = img_size
- self.stride = stride
- self.pipe = eval(pipe) if pipe.isnumeric() else pipe
- self.cap = cv2.VideoCapture(self.pipe) # video capture object
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
-
- def __iter__(self):
- self.count = -1
- return self
-
- def __next__(self):
- self.count += 1
- if cv2.waitKey(1) == ord('q'): # q to quit
- self.cap.release()
- cv2.destroyAllWindows()
- raise StopIteration
-
- # Read frame
- ret_val, img0 = self.cap.read()
- img0 = cv2.flip(img0, 1) # flip left-right
-
- # Print
- assert ret_val, f'Camera Error {self.pipe}'
- img_path = 'webcam.jpg'
- print(f'webcam {self.count}: ', end='')
-
- # Padded resize
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
-
- # Convert
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
- img = np.ascontiguousarray(img)
-
- return img_path, img, img0, None
-
- def __len__(self):
- return 0
-
-
- class LoadStreams: # multiple IP or RTSP cameras
- def __init__(self, sources='streams.txt', img_size=640, stride=32):
- self.mode = 'stream'
- self.img_size = img_size
- self.stride = stride
-
- if os.path.isfile(sources):
- with open(sources, 'r') as f:
- sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
- else:
- sources = [sources]
-
- n = len(sources)
- self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
- self.sources = [clean_str(x) for x in sources] # clean source names for later
- for i, s in enumerate(sources): # index, source
- # Start thread to read frames from video stream
- print(f'{i + 1}/{n}: {s}... ', end='')
- if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video
- check_requirements(('pafy', 'youtube_dl'))
- import pafy
- s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
- s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
- cap = cv2.VideoCapture(s)
- assert cap.isOpened(), f'Failed to open {s}'
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 # 30 FPS fallback
- self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
-
- _, self.imgs[i] = cap.read() # guarantee first frame
- self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
- print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
- self.threads[i].start()
- print('') # newline
-
- # check for common shapes
- s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
- if not self.rect:
- print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
-
- def update(self, i, cap):
- # Read stream `i` frames in daemon thread
- n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame
- while cap.isOpened() and n < f:
- n += 1
- # _, self.imgs[index] = cap.read()
- cap.grab()
- if n % read == 0:
- success, im = cap.retrieve()
- self.imgs[i] = im if success else self.imgs[i] * 0
- time.sleep(1 / self.fps[i]) # wait time
-
- def __iter__(self):
- self.count = -1
- return self
-
- def __next__(self):
- self.count += 1
- if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
- cv2.destroyAllWindows()
- raise StopIteration
-
- # Letterbox
- img0 = self.imgs.copy()
- img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
-
- # Stack
- img = np.stack(img, 0)
-
- # Convert
- img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
- img = np.ascontiguousarray(img)
-
- return self.sources, img, img0, None
-
- def __len__(self):
- return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
-
-
- def img2label_paths(img_paths):
- # Define label paths as a function of image paths
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
- return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
-
-
- class LoadImagesAndLabels(Dataset): # for training/testing
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
- cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
- self.img_size = img_size
- self.augment = augment
- self.hyp = hyp
- self.image_weights = image_weights
- self.rect = False if image_weights else rect
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
- self.mosaic_border = [-img_size // 2, -img_size // 2]
- self.stride = stride
- self.path = path
- self.albumentations = Albumentations() if augment else None
-
- try:
- f = [] # image files
- for p in path if isinstance(path, list) else [path]:
- p = Path(p) # os-agnostic
- if p.is_dir(): # dir
- f += glob.glob(str(p / '**' / '*.*'), recursive=True)
- # f = list(p.rglob('**/*.*')) # pathlib
- elif p.is_file(): # file
- with open(p, 'r') as t:
- t = t.read().strip().splitlines()
- parent = str(p.parent) + os.sep
- f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
- # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
- else:
- raise Exception(f'{prefix}{p} does not exist')
- self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS])
- # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
- assert self.img_files, f'{prefix}No images found'
- except Exception as e:
- raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
-
- # Check cache
- self.label_files = img2label_paths(self.img_files) # labels
- cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
- try:
- cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
- assert cache['version'] == 0.4 and cache['hash'] == get_hash(self.label_files + self.img_files)
- except:
- cache, exists = self.cache_labels(cache_path, prefix), False # cache
-
- # Display cache
- nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
- if exists:
- d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
- tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
- if cache['msgs']:
- logging.info('\n'.join(cache['msgs'])) # display warnings
- assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
-
- # Read cache
- [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
- labels, shapes, self.segments = zip(*cache.values())
- self.labels = list(labels)
- self.shapes = np.array(shapes, dtype=np.float64)
- self.img_files = list(cache.keys()) # update
- self.label_files = img2label_paths(cache.keys()) # update
- if single_cls:
- for x in self.labels:
- x[:, 0] = 0
-
- n = len(shapes) # number of images
- bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
- nb = bi[-1] + 1 # number of batches
- self.batch = bi # batch index of image
- self.n = n
- self.indices = range(n)
-
- # Rectangular Training
- if self.rect:
- # Sort by aspect ratio
- s = self.shapes # wh
- ar = s[:, 1] / s[:, 0] # aspect ratio
- irect = ar.argsort()
- self.img_files = [self.img_files[i] for i in irect]
- self.label_files = [self.label_files[i] for i in irect]
- self.labels = [self.labels[i] for i in irect]
- self.shapes = s[irect] # wh
- ar = ar[irect]
-
- # Set training image shapes
- shapes = [[1, 1]] * nb
- for i in range(nb):
- ari = ar[bi == i]
- mini, maxi = ari.min(), ari.max()
- if maxi < 1:
- shapes[i] = [maxi, 1]
- elif mini > 1:
- shapes[i] = [1, 1 / mini]
-
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
-
- # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
- self.imgs, self.img_npy = [None] * n, [None] * n
- if cache_images:
- if cache_images == 'disk':
- self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
- self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
- self.im_cache_dir.mkdir(parents=True, exist_ok=True)
- gb = 0 # Gigabytes of cached images
- self.img_hw0, self.img_hw = [None] * n, [None] * n
- results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
- pbar = tqdm(enumerate(results), total=n)
- for i, x in pbar:
- if cache_images == 'disk':
- if not self.img_npy[i].exists():
- np.save(self.img_npy[i].as_posix(), x[0])
- gb += self.img_npy[i].stat().st_size
- else:
- self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
- gb += self.imgs[i].nbytes
- pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
- pbar.close()
-
- def cache_labels(self, path=Path('./labels.cache'), prefix=''):
- # Cache dataset labels, check images and read shapes
- x = {} # dict
- nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
- desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
- with Pool(NUM_THREADS) as pool:
- pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
- desc=desc, total=len(self.img_files))
- for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
- nm += nm_f
- nf += nf_f
- ne += ne_f
- nc += nc_f
- if im_file:
- x[im_file] = [l, shape, segments]
- if msg:
- msgs.append(msg)
- pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
-
- pbar.close()
- if msgs:
- logging.info('\n'.join(msgs))
- if nf == 0:
- logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
- x['hash'] = get_hash(self.label_files + self.img_files)
- x['results'] = nf, nm, ne, nc, len(self.img_files)
- x['msgs'] = msgs # warnings
- x['version'] = 0.4 # cache version
- try:
- np.save(path, x) # save cache for next time
- path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
- logging.info(f'{prefix}New cache created: {path}')
- except Exception as e:
- logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable
- return x
-
- def __len__(self):
- return len(self.img_files)
-
- # def __iter__(self):
- # self.count = -1
- # print('ran dataset iter')
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
- # return self
-
- def __getitem__(self, index):
- index = self.indices[index] # linear, shuffled, or image_weights
-
- hyp = self.hyp
- mosaic = self.mosaic and random.random() < hyp['mosaic']
- if mosaic:
- # Load mosaic
- img, labels = load_mosaic(self, index)
- shapes = None
-
- # MixUp augmentation
- if random.random() < hyp['mixup']:
- img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1)))
-
- else:
- # Load image
- img, (h0, w0), (h, w) = load_image(self, index)
-
- # Letterbox
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
-
- labels = self.labels[index].copy()
- if labels.size: # normalized xywh to pixel xyxy format
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
-
- if self.augment:
- img, labels = random_perspective(img, labels,
- degrees=hyp['degrees'],
- translate=hyp['translate'],
- scale=hyp['scale'],
- shear=hyp['shear'],
- perspective=hyp['perspective'])
-
- nl = len(labels) # number of labels
- if nl:
- labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
-
- if self.augment:
- # Albumentations
- img, labels = self.albumentations(img, labels)
-
- # HSV color-space
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
-
- # Flip up-down
- if random.random() < hyp['flipud']:
- img = np.flipud(img)
- if nl:
- labels[:, 2] = 1 - labels[:, 2]
-
- # Flip left-right
- if random.random() < hyp['fliplr']:
- img = np.fliplr(img)
- if nl:
- labels[:, 1] = 1 - labels[:, 1]
-
- # Cutouts
- # labels = cutout(img, labels, p=0.5)
-
- labels_out = torch.zeros((nl, 6))
- if nl:
- labels_out[:, 1:] = torch.from_numpy(labels)
-
- # Convert
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
- img = np.ascontiguousarray(img)
-
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
-
- @staticmethod
- def collate_fn(batch):
- img, label, path, shapes = zip(*batch) # transposed
- for i, l in enumerate(label):
- l[:, 0] = i # add target image index for build_targets()
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
-
- @staticmethod
- def collate_fn4(batch):
- img, label, path, shapes = zip(*batch) # transposed
- n = len(shapes) // 4
- img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
-
- ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
- wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
- s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
- for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
- i *= 4
- if random.random() < 0.5:
- im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
- 0].type(img[i].type())
- l = label[i]
- else:
- im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
- l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
- img4.append(im)
- label4.append(l)
-
- for i, l in enumerate(label4):
- l[:, 0] = i # add target image index for build_targets()
-
- return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
-
-
- # Ancillary functions --------------------------------------------------------------------------------------------------
- def load_image(self, i):
- # loads 1 image from dataset index 'i', returns im, original hw, resized hw
- im = self.imgs[i]
- if im is None: # not cached in ram
- npy = self.img_npy[i]
- if npy and npy.exists(): # load npy
- im = np.load(npy)
- else: # read image
- path = self.img_files[i]
- im = cv2.imread(path) # BGR
- assert im is not None, 'Image Not Found ' + path
- h0, w0 = im.shape[:2] # orig hw
- r = self.img_size / max(h0, w0) # ratio
- if r != 1: # if sizes are not equal
- im = cv2.resize(im, (int(w0 * r), int(h0 * r)),
- interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
- return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
- else:
- return self.imgs[i], self.img_hw0[i], self.img_hw[i] # im, hw_original, hw_resized
-
-
- def load_mosaic(self, index):
- # loads images in a 4-mosaic
-
- labels4, segments4 = [], []
- s = self.img_size
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
- for i, index in enumerate(indices):
- # Load image
- img, _, (h, w) = load_image(self, index)
-
- # place img in img4
- if i == 0: # top left
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
- elif i == 1: # top right
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
- elif i == 2: # bottom left
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
- elif i == 3: # bottom right
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
-
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
- padw = x1a - x1b
- padh = y1a - y1b
-
- # Labels
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
- if labels.size:
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
- labels4.append(labels)
- segments4.extend(segments)
-
- # Concat/clip labels
- labels4 = np.concatenate(labels4, 0)
- for x in (labels4[:, 1:], *segments4):
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
- # img4, labels4 = replicate(img4, labels4) # replicate
-
- # Augment
- img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
- img4, labels4 = random_perspective(img4, labels4, segments4,
- degrees=self.hyp['degrees'],
- translate=self.hyp['translate'],
- scale=self.hyp['scale'],
- shear=self.hyp['shear'],
- perspective=self.hyp['perspective'],
- border=self.mosaic_border) # border to remove
-
- return img4, labels4
-
-
- def load_mosaic9(self, index):
- # loads images in a 9-mosaic
-
- labels9, segments9 = [], []
- s = self.img_size
- indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
- for i, index in enumerate(indices):
- # Load image
- img, _, (h, w) = load_image(self, index)
-
- # place img in img9
- if i == 0: # center
- img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
- h0, w0 = h, w
- c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
- elif i == 1: # top
- c = s, s - h, s + w, s
- elif i == 2: # top right
- c = s + wp, s - h, s + wp + w, s
- elif i == 3: # right
- c = s + w0, s, s + w0 + w, s + h
- elif i == 4: # bottom right
- c = s + w0, s + hp, s + w0 + w, s + hp + h
- elif i == 5: # bottom
- c = s + w0 - w, s + h0, s + w0, s + h0 + h
- elif i == 6: # bottom left
- c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
- elif i == 7: # left
- c = s - w, s + h0 - h, s, s + h0
- elif i == 8: # top left
- c = s - w, s + h0 - hp - h, s, s + h0 - hp
-
- padx, pady = c[:2]
- x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
-
- # Labels
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
- if labels.size:
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
- segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
- labels9.append(labels)
- segments9.extend(segments)
-
- # Image
- img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
- hp, wp = h, w # height, width previous
-
- # Offset
- yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
- img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
-
- # Concat/clip labels
- labels9 = np.concatenate(labels9, 0)
- labels9[:, [1, 3]] -= xc
- labels9[:, [2, 4]] -= yc
- c = np.array([xc, yc]) # centers
- segments9 = [x - c for x in segments9]
-
- for x in (labels9[:, 1:], *segments9):
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
- # img9, labels9 = replicate(img9, labels9) # replicate
-
- # Augment
- img9, labels9 = random_perspective(img9, labels9, segments9,
- degrees=self.hyp['degrees'],
- translate=self.hyp['translate'],
- scale=self.hyp['scale'],
- shear=self.hyp['shear'],
- perspective=self.hyp['perspective'],
- border=self.mosaic_border) # border to remove
-
- return img9, labels9
-
-
- def create_folder(path='./new'):
- # Create folder
- if os.path.exists(path):
- shutil.rmtree(path) # delete output folder
- os.makedirs(path) # make new output folder
-
-
- def flatten_recursive(path='../datasets/coco128'):
- # Flatten a recursive directory by bringing all files to top level
- new_path = Path(path + '_flat')
- create_folder(new_path)
- for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
- shutil.copyfile(file, new_path / Path(file).name)
-
-
- def extract_boxes(path='../datasets/coco128'): # from utils.datasets import *; extract_boxes()
- # Convert detection dataset into classification dataset, with one directory per class
- path = Path(path) # images dir
- shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
- files = list(path.rglob('*.*'))
- n = len(files) # number of files
- for im_file in tqdm(files, total=n):
- if im_file.suffix[1:] in IMG_FORMATS:
- # image
- im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
- h, w = im.shape[:2]
-
- # labels
- lb_file = Path(img2label_paths([str(im_file)])[0])
- if Path(lb_file).exists():
- with open(lb_file, 'r') as f:
- lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
-
- for j, x in enumerate(lb):
- c = int(x[0]) # class
- f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
- if not f.parent.is_dir():
- f.parent.mkdir(parents=True)
-
- b = x[1:] * [w, h, w, h] # box
- # b[2:] = b[2:].max() # rectangle to square
- b[2:] = b[2:] * 1.2 + 3 # pad
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
-
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
- assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
-
-
- def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
- """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
- Usage: from utils.datasets import *; autosplit()
- Arguments
- path: Path to images directory
- weights: Train, val, test weights (list, tuple)
- annotated_only: Only use images with an annotated txt file
- """
- path = Path(path) # images dir
- files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in IMG_FORMATS], []) # image files only
- n = len(files) # number of files
- random.seed(0) # for reproducibility
- indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
-
- txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
- [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
-
- print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
- for i, img in tqdm(zip(indices, files), total=n):
- if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
- with open(path.parent / txt[i], 'a') as f:
- f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
-
-
- def verify_image_label(args):
- # Verify one image-label pair
- im_file, lb_file, prefix = args
- nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, corrupt
- try:
- # verify images
- im = Image.open(im_file)
- im.verify() # PIL verify
- shape = exif_size(im) # image size
- assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
- assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
- if im.format.lower() in ('jpg', 'jpeg'):
- with open(im_file, 'rb') as f:
- f.seek(-2, 2)
- assert f.read() == b'\xff\xd9', 'corrupted JPEG'
-
- # verify labels
- segments = [] # instance segments
- if os.path.isfile(lb_file):
- nf = 1 # label found
- with open(lb_file, 'r') as f:
- l = [x.split() for x in f.read().strip().splitlines() if len(x)]
- if any([len(x) > 8 for x in l]): # is segment
- classes = np.array([x[0] for x in l], dtype=np.float32)
- segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
- l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
- l = np.array(l, dtype=np.float32)
- if len(l):
- assert l.shape[1] == 5, 'labels require 5 columns each'
- assert (l >= 0).all(), 'negative labels'
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
- assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
- else:
- ne = 1 # label empty
- l = np.zeros((0, 5), dtype=np.float32)
- else:
- nm = 1 # label missing
- l = np.zeros((0, 5), dtype=np.float32)
- return im_file, l, shape, segments, nm, nf, ne, nc, ''
- except Exception as e:
- nc = 1
- msg = f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}'
- return [None, None, None, None, nm, nf, ne, nc, msg]
-
-
- def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
- """ Return dataset statistics dictionary with images and instances counts per split per class
- To run in parent directory: export PYTHONPATH="$PWD/yolov5"
- Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
- Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
- Arguments
- path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
- autodownload: Attempt to download dataset if not found locally
- verbose: Print stats dictionary
- """
-
- def round_labels(labels):
- # Update labels to integer class and 6 decimal place floats
- return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels]
-
- def unzip(path):
- # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
- if str(path).endswith('.zip'): # path is data.zip
- assert Path(path).is_file(), f'Error unzipping {path}, file not found'
- assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}'
- dir = path.with_suffix('') # dataset directory
- return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
- else: # path is data.yaml
- return False, None, path
-
- def hub_ops(f, max_dim=1920):
- # HUB ops for 1 image 'f'
- im = Image.open(f)
- r = max_dim / max(im.height, im.width) # ratio
- if r < 1.0: # image too large
- im = im.resize((int(im.width * r), int(im.height * r)))
- im.save(im_dir / Path(f).name, quality=75) # save
-
- zipped, data_dir, yaml_path = unzip(Path(path))
- with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f:
- data = yaml.safe_load(f) # data dict
- if zipped:
- data['path'] = data_dir # TODO: should this be dir.resolve()?
- check_dataset(data, autodownload) # download dataset if missing
- hub_dir = Path(data['path'] + ('-hub' if hub else ''))
- stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
- for split in 'train', 'val', 'test':
- if data.get(split) is None:
- stats[split] = None # i.e. no test set
- continue
- x = []
- dataset = LoadImagesAndLabels(data[split]) # load dataset
- for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
- x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
- x = np.array(x) # shape(128x80)
- stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
- 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
- 'per_class': (x > 0).sum(0).tolist()},
- 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
- zip(dataset.img_files, dataset.labels)]}
-
- if hub:
- im_dir = hub_dir / 'images'
- im_dir.mkdir(parents=True, exist_ok=True)
- for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
- pass
-
- # Profile
- stats_path = hub_dir / 'stats.json'
- if profile:
- for _ in range(1):
- file = stats_path.with_suffix('.npy')
- t1 = time.time()
- np.save(file, stats)
- t2 = time.time()
- x = np.load(file, allow_pickle=True)
- print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
-
- file = stats_path.with_suffix('.json')
- t1 = time.time()
- with open(file, 'w') as f:
- json.dump(stats, f) # save stats *.json
- t2 = time.time()
- with open(file, 'r') as f:
- x = json.load(f) # load hyps dict
- print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
-
- # Save, print and return
- if hub:
- print(f'Saving {stats_path.resolve()}...')
- with open(stats_path, 'w') as f:
- json.dump(stats, f) # save stats.json
- if verbose:
- print(json.dumps(stats, indent=2, sort_keys=False))
- return stats
|