|
- #include "cuda_utils.h"
- #include "logging.h"
- #include "utils.h"
- #include "model.h"
- #include "config.h"
- #include "calibrator.h"
-
- #include <iostream>
- #include <chrono>
- #include <cmath>
- #include <numeric>
- #include <opencv2/opencv.hpp>
-
- using namespace nvinfer1;
-
- static Logger gLogger;
- const static int kOutputSize = kClsNumClass;
-
- void batch_preprocess(std::vector<cv::Mat>& imgs, float* output) {
- for (size_t b = 0; b < imgs.size(); b++) {
- cv::Mat img;
- // cv::resize(imgs[b], img, cv::Size(kClsInputW, kClsInputH));
- img = preprocess_img(imgs[b], kClsInputW, kClsInputH);
- int i = 0;
- for (int row = 0; row < img.rows; ++row) {
- uchar* uc_pixel = img.data + row * img.step;
- for (int col = 0; col < img.cols; ++col) {
- output[b * 3 * img.rows * img.cols + i] = ((float)uc_pixel[2] / 255.0 - 0.485) / 0.229; // R - 0.485
- output[b * 3 * img.rows * img.cols + i + img.rows * img.cols] = ((float)uc_pixel[1] / 255.0 - 0.456) / 0.224;
- output[b * 3 * img.rows * img.cols + i + 2 * img.rows * img.cols] = ((float)uc_pixel[0] / 255.0 - 0.406) / 0.225;
- uc_pixel += 3;
- ++i;
- }
- }
- }
- }
-
- std::vector<float> softmax(float *prob, int n) {
- std::vector<float> res;
- float sum = 0.0f;
- float t;
- for (int i = 0; i < n; i++) {
- t = expf(prob[i]);
- res.push_back(t);
- sum += t;
- }
- for (int i = 0; i < n; i++) {
- res[i] /= sum;
- }
- return res;
- }
-
- std::vector<int> topk(const std::vector<float>& vec, int k) {
- std::vector<int> topk_index;
- std::vector<size_t> vec_index(vec.size());
- std::iota(vec_index.begin(), vec_index.end(), 0);
-
- std::sort(vec_index.begin(), vec_index.end(), [&vec](size_t index_1, size_t index_2) { return vec[index_1] > vec[index_2]; });
-
- int k_num = std::min<int>(vec.size(), k);
-
- for (int i = 0; i < k_num; ++i) {
- topk_index.push_back(vec_index[i]);
- }
-
- return topk_index;
- }
-
- std::vector<std::string> read_classes(std::string file_name) {
- std::vector<std::string> classes;
- std::ifstream ifs(file_name, std::ios::in);
- if (!ifs.is_open()) {
- std::cerr << file_name << " is not found, pls refer to README and download it." << std::endl;
- assert(0);
- }
- std::string s;
- while (std::getline(ifs, s)) {
- classes.push_back(s);
- }
- ifs.close();
- return classes;
- }
-
- bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir) {
- if (argc < 4) return false;
- if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) {
- wts = std::string(argv[2]);
- engine = std::string(argv[3]);
- auto net = std::string(argv[4]);
- if (net[0] == 'n') {
- gd = 0.33;
- gw = 0.25;
- } else if (net[0] == 's') {
- gd = 0.33;
- gw = 0.50;
- } else if (net[0] == 'm') {
- gd = 0.67;
- gw = 0.75;
- } else if (net[0] == 'l') {
- gd = 1.0;
- gw = 1.0;
- } else if (net[0] == 'x') {
- gd = 1.33;
- gw = 1.25;
- } else if (net[0] == 'c' && argc == 7) {
- gd = atof(argv[5]);
- gw = atof(argv[6]);
- } else {
- return false;
- }
- } else if (std::string(argv[1]) == "-d" && argc == 4) {
- engine = std::string(argv[2]);
- img_dir = std::string(argv[3]);
- } else {
- return false;
- }
- return true;
- }
-
- void prepare_buffers(ICudaEngine* engine, float** gpu_input_buffer, float** gpu_output_buffer, float** cpu_input_buffer, float** cpu_output_buffer) {
- assert(engine->getNbBindings() == 2);
- // In order to bind the buffers, we need to know the names of the input and output tensors.
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
- const int inputIndex = engine->getBindingIndex(kInputTensorName);
- const int outputIndex = engine->getBindingIndex(kOutputTensorName);
- assert(inputIndex == 0);
- assert(outputIndex == 1);
- // Create GPU buffers on device
- CUDA_CHECK(cudaMalloc((void**)gpu_input_buffer, kBatchSize * 3 * kClsInputH * kClsInputW * sizeof(float)));
- CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer, kBatchSize * kOutputSize * sizeof(float)));
-
- *cpu_input_buffer = new float[kBatchSize * 3 * kClsInputH * kClsInputW];
- *cpu_output_buffer = new float[kBatchSize * kOutputSize];
- }
-
- void infer(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* input, float* output, int batchSize) {
- CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * kClsInputH * kClsInputW * sizeof(float), cudaMemcpyHostToDevice, stream));
- context.enqueue(batchSize, buffers, stream, nullptr);
- CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * kOutputSize * sizeof(float), cudaMemcpyDeviceToHost, stream));
- cudaStreamSynchronize(stream);
- }
-
- void serialize_engine(unsigned int max_batchsize, float& gd, float& gw, std::string& wts_name, std::string& engine_name) {
- // Create builder
- IBuilder* builder = createInferBuilder(gLogger);
- IBuilderConfig* config = builder->createBuilderConfig();
-
- // Create model to populate the network, then set the outputs and create an engine
- ICudaEngine *engine = nullptr;
-
- engine = build_cls_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
-
- assert(engine != nullptr);
-
- // Serialize the engine
- IHostMemory* serialized_engine = engine->serialize();
- assert(serialized_engine != nullptr);
-
- // Save engine to file
- std::ofstream p(engine_name, std::ios::binary);
- if (!p) {
- std::cerr << "Could not open plan output file" << std::endl;
- assert(false);
- }
- p.write(reinterpret_cast<const char*>(serialized_engine->data()), serialized_engine->size());
-
- // Close everything down
- engine->destroy();
- config->destroy();
- serialized_engine->destroy();
- builder->destroy();
- }
-
- void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine, IExecutionContext** context) {
- std::ifstream file(engine_name, std::ios::binary);
- if (!file.good()) {
- std::cerr << "read " << engine_name << " error!" << std::endl;
- assert(false);
- }
- size_t size = 0;
- file.seekg(0, file.end);
- size = file.tellg();
- file.seekg(0, file.beg);
- char* serialized_engine = new char[size];
- assert(serialized_engine);
- file.read(serialized_engine, size);
- file.close();
-
- *runtime = createInferRuntime(gLogger);
- assert(*runtime);
- *engine = (*runtime)->deserializeCudaEngine(serialized_engine, size);
- assert(*engine);
- *context = (*engine)->createExecutionContext();
- assert(*context);
- delete[] serialized_engine;
- }
-
- int main(int argc, char** argv) {
- cudaSetDevice(kGpuId);
-
- std::string wts_name = "";
- std::string engine_name = "";
- float gd = 0.0f, gw = 0.0f;
- std::string img_dir;
-
- if (!parse_args(argc, argv, wts_name, engine_name, gd, gw, img_dir)) {
- std::cerr << "arguments not right!" << std::endl;
- std::cerr << "./yolov5_cls -s [.wts] [.engine] [n/s/m/l/x or c gd gw] // serialize model to plan file" << std::endl;
- std::cerr << "./yolov5_cls -d [.engine] ../images // deserialize plan file and run inference" << std::endl;
- return -1;
- }
-
- // Create a model using the API directly and serialize it to a file
- if (!wts_name.empty()) {
- serialize_engine(kBatchSize, gd, gw, wts_name, engine_name);
- return 0;
- }
-
- // Deserialize the engine from file
- IRuntime* runtime = nullptr;
- ICudaEngine* engine = nullptr;
- IExecutionContext* context = nullptr;
- deserialize_engine(engine_name, &runtime, &engine, &context);
- cudaStream_t stream;
- CUDA_CHECK(cudaStreamCreate(&stream));
-
- // Prepare cpu and gpu buffers
- float* gpu_buffers[2];
- float* cpu_input_buffer = nullptr;
- float* cpu_output_buffer = nullptr;
- prepare_buffers(engine, &gpu_buffers[0], &gpu_buffers[1], &cpu_input_buffer, &cpu_output_buffer);
-
- // Read images from directory
- std::vector<std::string> file_names;
- if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
- std::cerr << "read_files_in_dir failed." << std::endl;
- return -1;
- }
-
- // Read imagenet labels
- auto classes = read_classes("imagenet_classes.txt");
-
- // batch predict
- for (size_t i = 0; i < file_names.size(); i += kBatchSize) {
- // Get a batch of images
- std::vector<cv::Mat> img_batch;
- std::vector<std::string> img_name_batch;
- for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) {
- cv::Mat img = cv::imread(img_dir + "/" + file_names[j]);
- img_batch.push_back(img);
- img_name_batch.push_back(file_names[j]);
- }
-
- // Preprocess
- batch_preprocess(img_batch, cpu_input_buffer);
-
- // Run inference
- auto start = std::chrono::system_clock::now();
- infer(*context, stream, (void**)gpu_buffers, cpu_input_buffer, cpu_output_buffer, kBatchSize);
- auto end = std::chrono::system_clock::now();
- std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
-
- // Postprocess and get top-k result
- for (size_t b = 0; b < img_name_batch.size(); b++) {
- float* p = &cpu_output_buffer[b * kOutputSize];
- auto res = softmax(p, kOutputSize);
- auto topk_idx = topk(res, 3);
- std::cout << img_name_batch[b] << std::endl;
- for (auto idx: topk_idx) {
- std::cout << " " << classes[idx] << " " << res[idx] << std::endl;
- }
- }
- }
-
- // Release stream and buffers
- cudaStreamDestroy(stream);
- CUDA_CHECK(cudaFree(gpu_buffers[0]));
- CUDA_CHECK(cudaFree(gpu_buffers[1]));
- delete[] cpu_input_buffer;
- delete[] cpu_output_buffer;
- // Destroy the engine
- context->destroy();
- engine->destroy();
- runtime->destroy();
-
- return 0;
- }
|