|
- """
- An example that uses TensorRT's Python api to make inferences.
- """
- import ctypes
- import os
- import shutil
- import random
- import sys
- import threading
- import time
- import cv2
- import numpy as np
- import pycuda.autoinit
- import pycuda.driver as cuda
- import tensorrt as trt
-
- CONF_THRESH = 0.5
- IOU_THRESHOLD = 0.4
-
-
- def get_img_path_batches(batch_size, img_dir):
- ret = []
- batch = []
- for root, dirs, files in os.walk(img_dir):
- for name in files:
- if len(batch) == batch_size:
- ret.append(batch)
- batch = []
- batch.append(os.path.join(root, name))
- if len(batch) > 0:
- ret.append(batch)
- return ret
-
-
- def plot_one_box(x, img, color=None, label=None, line_thickness=None):
- """
- description: Plots one bounding box on image img,
- this function comes from YoLov5 project.
- param:
- x: a box likes [x1,y1,x2,y2]
- img: a opencv image object
- color: color to draw rectangle, such as (0,255,0)
- label: str
- line_thickness: int
- return:
- no return
-
- """
- tl = (
- line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1
- ) # line/font thickness
- color = color or [random.randint(0, 255) for _ in range(3)]
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
- cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
- if label:
- tf = max(tl - 1, 1) # font thickness
- t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
- c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
- cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(
- img,
- label,
- (c1[0], c1[1] - 2),
- 0,
- tl / 3,
- [225, 255, 255],
- thickness=tf,
- lineType=cv2.LINE_AA,
- )
-
-
- class YoLov5TRT(object):
- """
- description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops.
- """
-
- def __init__(self, engine_file_path):
- # Create a Context on this device,
- self.ctx = cuda.Device(0).make_context()
- stream = cuda.Stream()
- TRT_LOGGER = trt.Logger(trt.Logger.INFO)
- runtime = trt.Runtime(TRT_LOGGER)
-
- # Deserialize the engine from file
- with open(engine_file_path, "rb") as f:
- engine = runtime.deserialize_cuda_engine(f.read())
- context = engine.create_execution_context()
-
- host_inputs = []
- cuda_inputs = []
- host_outputs = []
- cuda_outputs = []
- bindings = []
-
- for binding in engine:
- print('bingding:', binding, engine.get_binding_shape(binding))
- size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
- dtype = trt.nptype(engine.get_binding_dtype(binding))
- # Allocate host and device buffers
- host_mem = cuda.pagelocked_empty(size, dtype)
- cuda_mem = cuda.mem_alloc(host_mem.nbytes)
- # Append the device buffer to device bindings.
- bindings.append(int(cuda_mem))
- # Append to the appropriate list.
- if engine.binding_is_input(binding):
- self.input_w = engine.get_binding_shape(binding)[-1]
- self.input_h = engine.get_binding_shape(binding)[-2]
- host_inputs.append(host_mem)
- cuda_inputs.append(cuda_mem)
- else:
- host_outputs.append(host_mem)
- cuda_outputs.append(cuda_mem)
- # Store
- self.stream = stream
- self.context = context
- self.engine = engine
- self.host_inputs = host_inputs
- self.cuda_inputs = cuda_inputs
- self.host_outputs = host_outputs
- self.cuda_outputs = cuda_outputs
- self.bindings = bindings
- self.batch_size = engine.max_batch_size
-
- # Data length
- self.det_output_length = host_outputs[0].shape[0]
- self.mask_output_length = host_outputs[1].shape[0]
- self.seg_w = int(self.input_w / 4)
- self.seg_h = int(self.input_h / 4)
- self.seg_c = int(self.mask_output_length / (self.seg_w * self.seg_w))
- self.det_row_output_length = self.seg_c + 6
-
- # Draw mask
- self.colors_obj = Colors()
-
- def infer(self, raw_image_generator):
- threading.Thread.__init__(self)
- # Make self the active context, pushing it on top of the context stack.
- self.ctx.push()
- # Restore
- stream = self.stream
- context = self.context
- engine = self.engine
- host_inputs = self.host_inputs
- cuda_inputs = self.cuda_inputs
- host_outputs = self.host_outputs
- cuda_outputs = self.cuda_outputs
- bindings = self.bindings
- # Do image preprocess
- batch_image_raw = []
- batch_origin_h = []
- batch_origin_w = []
- batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w])
- for i, image_raw in enumerate(raw_image_generator):
- input_image, image_raw, origin_h, origin_w = self.preprocess_image(image_raw)
- batch_image_raw.append(image_raw)
- batch_origin_h.append(origin_h)
- batch_origin_w.append(origin_w)
- np.copyto(batch_input_image[i], input_image)
- batch_input_image = np.ascontiguousarray(batch_input_image)
-
- # Copy input image to host buffer
- np.copyto(host_inputs[0], batch_input_image.ravel())
- start = time.time()
- # Transfer input data to the GPU.
- cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
- # Run inference.
- context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle)
- # Transfer predictions back from the GPU.
- cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
- cuda.memcpy_dtoh_async(host_outputs[1], cuda_outputs[1], stream)
- # Synchronize the stream
- stream.synchronize()
- end = time.time()
- # Remove any context from the top of the context stack, deactivating it.
- self.ctx.pop()
- # Here we use the first row of output in that batch_size = 1
- output_bbox = host_outputs[0]
- output_proto_mask = host_outputs[1]
- # Do postprocess
- for i in range(self.batch_size):
- result_boxes, result_scores, result_classid, result_proto_coef = self.post_process(
- output_bbox[i * self.det_output_length: (i + 1) * self.det_output_length], batch_origin_h[i], batch_origin_w[i]
- )
- if result_proto_coef.shape[0] == 0:
- continue
- result_masks = self.process_mask(output_proto_mask, result_proto_coef, result_boxes, batch_origin_h[i], batch_origin_w[i])
-
- # Draw masks on the original image
- self.draw_mask(result_masks, colors_=[self.colors_obj(x, True) for x in result_classid],im_src=batch_image_raw[i])
-
- # Draw rectangles and labels on the original image
- for j in range(len(result_boxes)):
- box = result_boxes[j]
- plot_one_box(
- box,
- batch_image_raw[i],
- label="{}:{:.2f}".format(
- categories[int(result_classid[j])], result_scores[j]
- ),
- )
- return batch_image_raw, end - start
-
- def destroy(self):
- # Remove any context from the top of the context stack, deactivating it.
- self.ctx.pop()
-
- def get_raw_image(self, image_path_batch):
- """
- description: Read an image from image path
- """
- for img_path in image_path_batch:
- yield cv2.imread(img_path)
-
- def get_raw_image_zeros(self, image_path_batch=None):
- """
- description: Ready data for warmup
- """
- for _ in range(self.batch_size):
- yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8)
-
- def preprocess_image(self, raw_bgr_image):
- """
- description: Convert BGR image to RGB,
- resize and pad it to target size, normalize to [0,1],
- transform to NCHW format.
- param:
- input_image_path: str, image path
- return:
- image: the processed image
- image_raw: the original image
- h: original height
- w: original width
- """
- image_raw = raw_bgr_image
- h, w, c = image_raw.shape
- image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
- # Calculate widht and height and paddings
- r_w = self.input_w / w
- r_h = self.input_h / h
- if r_h > r_w:
- tw = self.input_w
- th = int(r_w * h)
- tx1 = tx2 = 0
- ty1 = int((self.input_h - th) / 2)
- ty2 = self.input_h - th - ty1
- else:
- tw = int(r_h * w)
- th = self.input_h
- tx1 = int((self.input_w - tw) / 2)
- tx2 = self.input_w - tw - tx1
- ty1 = ty2 = 0
- # Resize the image with long side while maintaining ratio
- image = cv2.resize(image, (tw, th))
- # Pad the short side with (128,128,128)
- image = cv2.copyMakeBorder(
- image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, None, (128, 128, 128)
- )
- image = image.astype(np.float32)
- # Normalize to [0,1]
- image /= 255.0
- # HWC to CHW format:
- image = np.transpose(image, [2, 0, 1])
- # CHW to NCHW format
- image = np.expand_dims(image, axis=0)
- # Convert the image to row-major order, also known as "C order":
- image = np.ascontiguousarray(image)
- return image, image_raw, h, w
-
- def xywh2xyxy(self, origin_h, origin_w, x):
- """
- description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
- param:
- origin_h: height of original image
- origin_w: width of original image
- x: A boxes numpy, each row is a box [center_x, center_y, w, h]
- return:
- y: A boxes numpy, each row is a box [x1, y1, x2, y2]
- """
- y = np.zeros_like(x)
- r_w = self.input_w / origin_w
- r_h = self.input_h / origin_h
- if r_h > r_w:
- y[:, 0] = x[:, 0] - x[:, 2] / 2
- y[:, 2] = x[:, 0] + x[:, 2] / 2
- y[:, 1] = x[:, 1] - x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2
- y[:, 3] = x[:, 1] + x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2
- y /= r_w
- else:
- y[:, 0] = x[:, 0] - x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2
- y[:, 2] = x[:, 0] + x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2
- y[:, 1] = x[:, 1] - x[:, 3] / 2
- y[:, 3] = x[:, 1] + x[:, 3] / 2
- y /= r_h
-
- return y
-
- def post_process(self, output_boxes, origin_h, origin_w):
- """
- description: postprocess the prediction
- param:
- output: A numpy likes [num_boxes, cx, cy, w, h, conf, cls_id, mask[32], cx, cy, w, h, conf, cls_id, mask[32] ...]
- origin_h: height of original image
- origin_w: width of original image
- return:
- result_boxes: finally boxes, a boxes numpy, each row is a box [x1, y1, x2, y2]
- result_scores: finally scores, a numpy, each element is the score correspoing to box
- result_classid: finally classid, a numpy, each element is the classid correspoing to box
- """
- # Get the num of boxes detected
- num = int(output_boxes[0])
- # Reshape to a two dimentional ndarray
- pred = np.reshape(output_boxes[1:], (-1, self.det_row_output_length))[:num, :]
- # Do nms
- boxes = self.non_max_suppression(pred, origin_h, origin_w, conf_thres=CONF_THRESH,
- nms_thres=IOU_THRESHOLD)
- result_boxes = boxes[:, :4] if len(boxes) else np.array([])
- result_scores = boxes[:, 4] if len(boxes) else np.array([])
- result_classid = boxes[:, 5] if len(boxes) else np.array([])
- result_proto_coef = boxes[:, 6:] if len(boxes) else np.array([])
- return result_boxes, result_scores, result_classid, result_proto_coef
-
- def bbox_iou(self, box1, box2, x1y1x2y2=True):
- """
- description: compute the IoU of two bounding boxes
- param:
- box1: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))
- box2: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))
- x1y1x2y2: select the coordinate format
- return:
- iou: computed iou
- """
- if not x1y1x2y2:
- # Transform from center and width to exact coordinates
- b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
- b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
- b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
- b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
- else:
- # Get the coordinates of bounding boxes
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
-
- # Get the coordinates of the intersection rectangle
- inter_rect_x1 = np.maximum(b1_x1, b2_x1)
- inter_rect_y1 = np.maximum(b1_y1, b2_y1)
- inter_rect_x2 = np.minimum(b1_x2, b2_x2)
- inter_rect_y2 = np.minimum(b1_y2, b2_y2)
- # Intersection area
- inter_area = np.clip(inter_rect_x2 - inter_rect_x1 + 1, 0, None) * \
- np.clip(inter_rect_y2 - inter_rect_y1 + 1, 0, None)
- # Union Area
- b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
- b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
-
- iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
-
- return iou
-
- def non_max_suppression(self, prediction, origin_h, origin_w, conf_thres=0.5, nms_thres=0.4):
- """
- description: Removes detections with lower object confidence score than 'conf_thres' and performs
- Non-Maximum Suppression to further filter detections.
- param:
- prediction: detections, (x1, y1, x2, y2, conf, cls_id, mask coefficients[32])
- origin_h: original image height
- origin_w: original image width
- conf_thres: a confidence threshold to filter detections
- nms_thres: a iou threshold to filter detections
- return:
- boxes: output after nms with the shape (x1, y1, x2, y2, conf, cls_id)
- """
- # Get the boxes that score > CONF_THRESH
- boxes = prediction[prediction[:, 4] >= conf_thres]
- # Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]
- boxes[:, :4] = self.xywh2xyxy(origin_h, origin_w, boxes[:, :4])
- # clip the coordinates
- boxes[:, 0] = np.clip(boxes[:, 0], 0, origin_w - 1)
- boxes[:, 2] = np.clip(boxes[:, 2], 0, origin_w - 1)
- boxes[:, 1] = np.clip(boxes[:, 1], 0, origin_h - 1)
- boxes[:, 3] = np.clip(boxes[:, 3], 0, origin_h - 1)
- # Object confidence
- confs = boxes[:, 4]
- # Sort by the confs
- boxes = boxes[np.argsort(-confs)]
- # Perform non-maximum suppression
- keep_boxes = []
- while boxes.shape[0]:
- large_overlap = self.bbox_iou(np.expand_dims(boxes[0, :4], 0), boxes[:, :4]) > nms_thres
- label_match = boxes[0, 5] == boxes[:, 5]
- # Indices of boxes with lower confidence scores, large IOUs and matching labels
- invalid = large_overlap & label_match
- keep_boxes += [boxes[0]]
- boxes = boxes[~invalid]
- boxes = np.stack(keep_boxes, 0) if len(keep_boxes) else np.array([])
- return boxes
-
- def sigmoid(self, x):
- return 1 / (1 + np.exp(-x))
-
- def scale_mask(self, mask, ih, iw):
- mask = cv2.resize(mask, (self.input_w, self.input_h))
- r_w = self.input_w / (iw * 1.0)
- r_h = self.input_h / (ih * 1.0)
- if r_h > r_w:
- w = self.input_w
- h = int(r_w * ih)
- x = 0
- y = int((self.input_h - h) / 2)
- else:
- w = int(r_h * iw)
- h = self.input_h
- x = int((self.input_w - w) / 2)
- y = 0
- crop = mask[y:y+h, x:x+w]
- crop = cv2.resize(crop, (iw, ih))
- return crop
-
-
- def process_mask(self, output_proto_mask, result_proto_coef, result_boxes, ih, iw):
- """
- description: Mask pred by yolov5 instance segmentation ,
- param:
- output_proto_mask: prototype mask e.g. (32, 160, 160) for 640x640 input
- result_proto_coef: prototype mask coefficients (n, 32), n represents n results
- result_boxes :
- ih: rows of original image
- iw: cols of original image
- return:
- mask_result: (n, ih, iw)
- """
- result_proto_masks = output_proto_mask.reshape(self.seg_c, self.seg_h, self.seg_w)
- c, mh, mw = result_proto_masks.shape
- masks = self.sigmoid((result_proto_coef @ result_proto_masks.astype(np.float32).reshape(c, -1))).reshape(-1, mh, mw)
- mask_result = []
- for mask, box in zip(masks, result_boxes):
- mask_s = np.zeros((ih, iw))
- crop_mask = self.scale_mask(mask, ih, iw)
- x1 = int(box[0])
- y1 = int(box[1])
- x2 = int(box[2])
- y2 = int(box[3])
- crop = crop_mask[y1:y2, x1:x2]
- crop = np.where(crop >= 0.5, 1, 0)
- crop = crop.astype(np.uint8)
- mask_s[y1:y2, x1:x2] = crop
- mask_result.append(mask_s)
- mask_result = np.array(mask_result)
- return mask_result
-
- def draw_mask(self, masks, colors_, im_src, alpha=0.5):
- """
- description: Draw mask on image ,
- param:
- masks : result_mask
- colors_: color to draw mask
- im_src : original image
- alpha : scale between original image and mask
- return:
- no return
- """
- if len(masks) == 0:
- return
- masks = np.asarray(masks, dtype=np.uint8)
- masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
- masks = np.asarray(masks, dtype=np.float32)
- colors_ = np.asarray(colors_, dtype=np.float32)
- s = masks.sum(2, keepdims=True).clip(0, 1)
- masks = (masks @ colors_).clip(0, 255)
- im_src[:] = masks * alpha + im_src * (1 - s * alpha)
-
- class inferThread(threading.Thread):
- def __init__(self, yolov5_wrapper, image_path_batch):
- threading.Thread.__init__(self)
- self.yolov5_wrapper = yolov5_wrapper
- self.image_path_batch = image_path_batch
-
- def run(self):
- batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image(self.image_path_batch))
- for i, img_path in enumerate(self.image_path_batch):
- parent, filename = os.path.split(img_path)
- save_name = os.path.join('output', filename)
- # Save image
- cv2.imwrite(save_name, batch_image_raw[i])
- print('input->{}, time->{:.2f}ms, saving into output/'.format(self.image_path_batch, use_time * 1000))
-
-
- class warmUpThread(threading.Thread):
- def __init__(self, yolov5_wrapper):
- threading.Thread.__init__(self)
- self.yolov5_wrapper = yolov5_wrapper
-
- def run(self):
- batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image_zeros())
- print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000))
-
-
- class Colors:
- def __init__(self):
- hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A',
- '92CC17', '3DDB86', '1A9334', '00D4BB', '2C99A8', '00C2FF',
- '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF',
- 'FF95C8', 'FF37C7')
- self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
- self.n = len(self.palette)
-
- def __call__(self, i, bgr=False):
- c = self.palette[int(i) % self.n]
- return (c[2], c[1], c[0]) if bgr else c
-
- @staticmethod
- def hex2rgb(h): # rgb order (PIL)
- return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
-
- if __name__ == "__main__":
- # load custom plugin and engine
- PLUGIN_LIBRARY = "build/libmyplugins.so"
- engine_file_path = "build/yolov5s-seg.engine"
-
- if len(sys.argv) > 1:
- engine_file_path = sys.argv[1]
- if len(sys.argv) > 2:
- PLUGIN_LIBRARY = sys.argv[2]
-
- ctypes.CDLL(PLUGIN_LIBRARY)
-
- # load coco labels
-
- categories = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
- "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
- "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
- "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
- "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
- "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
- "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
- "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
- "hair drier", "toothbrush"]
-
- if os.path.exists('output/'):
- shutil.rmtree('output/')
- os.makedirs('output/')
- # a YoLov5TRT instance
- yolov5_wrapper = YoLov5TRT(engine_file_path)
- try:
- print('batch size is', yolov5_wrapper.batch_size)
-
- image_dir = "images/"
- image_path_batches = get_img_path_batches(yolov5_wrapper.batch_size, image_dir)
-
- for i in range(10):
- # create a new thread to do warm_up
- thread1 = warmUpThread(yolov5_wrapper)
- thread1.start()
- thread1.join()
- for batch in image_path_batches:
- # create a new thread to do inference
- thread1 = inferThread(yolov5_wrapper, batch)
- thread1.start()
- thread1.join()
- finally:
- # destroy the instance
- yolov5_wrapper.destroy()
|