|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- # TPH-YOLOv5
- This repo is the implementation of ["TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios"](https://openaccess.thecvf.com/content/ICCV2021W/VisDrone/html/Zhu_TPH-YOLOv5_Improved_YOLOv5_Based_on_Transformer_Prediction_Head_for_Object_ICCVW_2021_paper.html) and ["TPH-YOLOv5++: Boosting Object Detection on Drone-Captured Scenarios with Cross-Layer Asymmetric Transformer"](https://www.mdpi.com/2072-4292/15/6/1687).
- On [VisDrone Challenge 2021](http://aiskyeye.com/), TPH-YOLOv5 wins 4th place and achieves well-matched results with 1st place model.
- ![image](result.png)
- You can get [VisDrone-DET2021: The Vision Meets Drone Object Detection Challenge Results](https://openaccess.thecvf.com/content/ICCV2021W/VisDrone/html/Cao_VisDrone-DET2021_The_Vision_Meets_Drone_Object_Detection_Challenge_Results_ICCVW_2021_paper.html) for more information. The TPH-YOLOv5++, as an improved version, significantly improves inference efficiency and reduces computational costs while maintaining detection performance compared to TPH-YOLOv5.
-
- # Install
- ```bash
- $ git clone https://github.com/cv516Buaa/tph-yolov5
- $ cd tph-yolov5
- $ pip install -r requirements.txt
- ```
- # Convert labels
- VisDrone2YOLO_lable.py transfer VisDrone annotiations to yolo labels.
- You should set the path of VisDrone dataset in VisDrone2YOLO_lable.py first.
- ```bash
- $ python VisDrone2YOLO_lable.py
- ```
-
- # Inference
- * `Datasets` : [VisDrone](http://aiskyeye.com/download/object-detection-2/), [UAVDT](https://sites.google.com/view/grli-uavdt/%E9%A6%96%E9%A1%B5)
- * `Weights` (PyTorch
- v1.10):
- * `yolov5l-xs-1.pt`: | [Baidu Drive(pw: vibe)](https://pan.baidu.com/s/1APETgMoeCOvZi1GsBZERrg). | [Google Drive](https://drive.google.com/file/d/1nGeKl3qOa26v3haGSDmLjeA0cjDD9p61/view?usp=sharing) |
- * `yolov5l-xs-2.pt`: | [Baidu Drive(pw: vffz)](https://pan.baidu.com/s/19S84EevP86yJIvnv9KYXDA). | [Google Drive](https://drive.google.com/file/d/1VmORvxNtvMVMvmY7cCwvp0BoL6L3RGiq/view?usp=sharing) |
-
- val.py runs inference on VisDrone2019-DET-val, using weights trained with TPH-YOLOv5.
- (We provide two weights trained by two different models based on YOLOv5l.)
-
- ```bash
- $ python val.py --weights ./weights/yolov5l-xs-1.pt --img 1996 --data ./data/VisDrone.yaml
- yolov5l-xs-2.pt
- --augment --save-txt --save-conf --task val --batch-size 8 --verbose --name v5l-xs
- ```
- ![image](./images/result_in_VisDrone.png)
- Inference on UAVDT is similar and results of TPH-YOLOv5++ on UAVDT are as follow:
- ![image](./images/result_in_UAVDT.png)
-
- # Ensemble
- If you inference dataset with different models, then you can ensemble the result by weighted boxes fusion using wbf.py.
- You should set img path and txt path in wbf.py.
- ```bash
- $ python wbf.py
- ```
-
- # Train
- train.py allows you to train new model from strach.
- ```bash
- $ python train.py --img 1536 --adam --batch 4 --epochs 80 --data ./data/VisDrone.yaml --weights yolov5l.pt --hy data/hyps/hyp.VisDrone.yaml --cfg models/yolov5l-xs-tph.yaml --name v5l-xs-tph
- $ python train.py --img 1536 --adam --batch 4 --epochs 80 --data ./data/VisDrone.yaml --weights yolov5l.pt --hy data/hyps/hyp.VisDrone.yaml --cfg models/yolov5l-tph-plus.yaml --name v5l-tph-plus
- ```
- ![image](train.png)
-
- # Description of TPH-YOLOv5, TPH-YOLOv5++ and citations
- - https://arxiv.org/abs/2108.11539
- - https://openaccess.thecvf.com/content/ICCV2021W/VisDrone/html/Zhu_TPH-YOLOv5_Improved_YOLOv5_Based_on_Transformer_Prediction_Head_for_Object_ICCVW_2021_paper.html
- - https://www.mdpi.com/2072-4292/15/6/1687
-
- If you have any question, please discuss with me by sending email to lyushuchang@buaa.edu.cn or liubinghao@buaa.edu.cn
- If you find this code useful please cite:
- ```
- @InProceedings{Zhu_2021_ICCV,
- author = {Zhu, Xingkui and Lyu, Shuchang and Wang, Xu and Zhao, Qi},
- title = {TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios},
- booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
- month = {October},
- year = {2021},
- pages = {2778-2788}
- }
-
- @Article{rs15061687,
- AUTHOR = {Zhao, Qi and Liu, Binghao and Lyu, Shuchang and Wang, Chunlei and Zhang, Hong},
- TITLE = {TPH-YOLOv5++: Boosting Object Detection on Drone-Captured Scenarios with Cross-Layer Asymmetric Transformer},
- JOURNAL = {Remote Sensing},
- VOLUME = {15},
- YEAR = {2023},
- NUMBER = {6},
- ARTICLE-NUMBER = {1687},
- URL = {https://www.mdpi.com/2072-4292/15/6/1687},
- ISSN = {2072-4292},
- DOI = {10.3390/rs15061687}
- }
- ```
-
- # References
- Thanks to their great works
- * [ultralytics/yolov5](https://github.com/ultralytics/yolov5)
- * [SwinTransformer](https://github.com/microsoft/Swin-Transformer)
- * [WBF](https://github.com/ZFTurbo/Weighted-Boxes-Fusion)
|