无人机视角的行人小目标检测
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

yolo.py 21KB

10 kuukautta sitten
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. YOLO-specific modules
  4. Usage:
  5. $ python path/to/models/yolo.py --cfg yolov5s.yaml
  6. """
  7. import argparse
  8. import sys
  9. from copy import deepcopy
  10. from pathlib import Path
  11. FILE = Path(__file__).resolve()
  12. ROOT = FILE.parents[1] # YOLOv5 root directory
  13. if str(ROOT) not in sys.path:
  14. sys.path.append(str(ROOT)) # add ROOT to PATH
  15. # ROOT = ROOT.relative_to(Path.cwd()) # relative
  16. from models.common import *
  17. from models.experimental import *
  18. from utils.autoanchor import check_anchor_order
  19. from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
  20. from utils.plots import feature_visualization
  21. from utils.torch_utils import (copy_attr, fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device,
  22. time_sync)
  23. try:
  24. import thop # for FLOPs computation
  25. except ImportError:
  26. thop = None
  27. class Detect(nn.Module):
  28. stride = None # strides computed during build
  29. onnx_dynamic = False # ONNX export parameter
  30. def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
  31. super().__init__()
  32. self.nc = nc # number of classes
  33. self.no = nc + 5 # number of outputs per anchor
  34. self.nl = len(anchors) # number of detection layers
  35. self.na = len(anchors[0]) // 2 # number of anchors
  36. self.grid = [torch.zeros(1)] * self.nl # init grid
  37. self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
  38. self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
  39. self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
  40. self.inplace = inplace # use in-place ops (e.g. slice assignment)
  41. def forward(self, x):
  42. z = [] # inference output
  43. for i in range(self.nl):
  44. x[i] = self.m[i](x[i]) # conv
  45. bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
  46. x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  47. if not self.training: # inference
  48. if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
  49. self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
  50. y = x[i].sigmoid()
  51. if self.inplace:
  52. y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
  53. y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
  54. else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
  55. xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
  56. wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
  57. y = torch.cat((xy, wh, y[..., 4:]), -1)
  58. z.append(y.view(bs, -1, self.no))
  59. return x if self.training else (torch.cat(z, 1), x)
  60. # return x if self.training else (z[0], x) # (torch.cat(z, 1), x)
  61. def _make_grid(self, nx=20, ny=20, i=0):
  62. d = self.anchors[i].device
  63. if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
  64. yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
  65. else:
  66. yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
  67. grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
  68. anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
  69. .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
  70. return grid, anchor_grid
  71. class CLLA(nn.Module):
  72. def __init__(self, range, c):
  73. super().__init__()
  74. self.c_ = c
  75. self.q = nn.Linear(self.c_, self.c_)
  76. self.k = nn.Linear(self.c_, self.c_)
  77. self.v = nn.Linear(self.c_, self.c_)
  78. self.range = range
  79. self.attend = nn.Softmax(dim = -1)
  80. def forward(self, x1, x2):
  81. b1, c1, w1, h1 = x1.shape
  82. b2, c2, w2, h2 = x2.shape
  83. assert b1 == b2 and c1 == c2
  84. x2_ = x2.permute(0, 2, 3, 1).contiguous().unsqueeze(3)
  85. pad = int(self.range / 2 - 1)
  86. padding = nn.ZeroPad2d(padding=(pad, pad, pad, pad))
  87. x1 = padding(x1)
  88. local = []
  89. for i in range(int(self.range)):
  90. for j in range(int(self.range)):
  91. tem = x1
  92. tem = tem[..., i::2, j::2][..., :w2, :h2].contiguous().unsqueeze(2)
  93. local.append(tem)
  94. local = torch.cat(local, 2)
  95. x1 = local.permute(0, 3, 4, 2, 1)
  96. q = self.q(x2_)
  97. k, v = self.k(x1), self.v(x1)
  98. dots = torch.sum(q * k / self.range, 4)
  99. irr = torch.mean(dots, 3).unsqueeze(3) * 2 - dots
  100. att = self.attend(irr)
  101. out = v * att.unsqueeze(4)
  102. out = torch.sum(out, 3)
  103. out = out.squeeze(3).permute(0, 3, 1, 2).contiguous()
  104. # x2 = x2.squeeze(3).permute(0, 3, 1, 2).contiguous()
  105. return (out + x2) / 2
  106. # return out
  107. class CLLABlock(nn.Module):
  108. def __init__(self, range=2, ch=256, ch1=128, ch2=256, out=0):
  109. super().__init__()
  110. self.range = range
  111. self.c_ = ch
  112. self.cout = out
  113. self.conv1 = nn.Conv2d(ch1, self.c_, 1)
  114. self.conv2 = nn.Conv2d(ch2, self.c_, 1)
  115. self.att = CLLA(range = range, c = self.c_)
  116. self.det = nn.Conv2d(self.c_, out, 1)
  117. def forward(self, x1, x2):
  118. x1 = self.conv1(x1)
  119. x2 = self.conv2(x2)
  120. f = self.att(x1, x2)
  121. return self.det(f)
  122. class CLLADetect(nn.Module):
  123. stride = None # strides computed during build
  124. onnx_dynamic = False # ONNX export parameter
  125. def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
  126. super().__init__()
  127. self.nc = nc # number of classes
  128. self.no = nc + 5 # number of outputs per anchor
  129. self.nl = len(anchors) # number of detection layers
  130. self.na = len(anchors[0]) // 2 # number of anchors
  131. self.grid = [torch.zeros(1)] * self.nl # init grid
  132. self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
  133. self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
  134. self.det = CLLABlock(range = 2, ch = ch[0], ch1 = ch[0], ch2 = ch[1], out = self.no * self.na)
  135. self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[2:]) # output conv
  136. self.inplace = inplace # use in-place ops (e.g. slice assignment)
  137. def forward(self, x):
  138. z = [] # inference output
  139. p = []
  140. for i in range(self.nl):
  141. if i == 0:
  142. p.append(self.det(x[0], x[1]))
  143. else:
  144. p.append(self.m[i-1](x[i+1])) # conv
  145. bs, _, ny, nx = p[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
  146. p[i] = p[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  147. if not self.training: # inference
  148. if self.onnx_dynamic or self.grid[i].shape[2:4] != p[i].shape[2:4]:
  149. self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
  150. y = p[i].sigmoid()
  151. if self.inplace:
  152. y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
  153. y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
  154. else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
  155. xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
  156. wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
  157. y = torch.cat((xy, wh, y[..., 4:]), -1)
  158. z.append(y.view(bs, -1, self.no))
  159. return p if self.training else (torch.cat(z, 1), p)
  160. # return x if self.training else (z[0], x) # (torch.cat(z, 1), x)
  161. def _make_grid(self, nx=20, ny=20, i=0):
  162. d = self.anchors[i].device
  163. if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
  164. yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
  165. else:
  166. yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
  167. grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
  168. anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
  169. .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
  170. return grid, anchor_grid
  171. class Model(nn.Module):
  172. def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
  173. super().__init__()
  174. if isinstance(cfg, dict):
  175. self.yaml = cfg # model dict
  176. else: # is *.yaml
  177. import yaml # for torch hub
  178. self.yaml_file = Path(cfg).name
  179. with open(cfg, errors='ignore') as f:
  180. self.yaml = yaml.safe_load(f) # model dict
  181. # Define model
  182. ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
  183. if nc and nc != self.yaml['nc']:
  184. LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
  185. self.yaml['nc'] = nc # override yaml value
  186. if anchors:
  187. LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
  188. self.yaml['anchors'] = round(anchors) # override yaml value
  189. self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
  190. self.names = [str(i) for i in range(self.yaml['nc'])] # default names
  191. self.inplace = self.yaml.get('inplace', True)
  192. # Build strides, anchors
  193. m = self.model[-1] # Detect()
  194. if isinstance(m, Detect) or isinstance(m, CLLADetect):
  195. s = 256 # 2x min stride
  196. m.inplace = self.inplace
  197. m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
  198. m.anchors /= m.stride.view(-1, 1, 1)
  199. check_anchor_order(m)
  200. self.stride = m.stride
  201. self._initialize_biases() # only run once
  202. # Init weights, biases
  203. initialize_weights(self)
  204. self.info()
  205. LOGGER.info('')
  206. def forward(self, x, augment=False, profile=False, visualize=False):
  207. if augment:
  208. return self._forward_augment(x) # augmented inference, None
  209. return self._forward_once(x, profile, visualize) # single-scale inference, train
  210. def _forward_augment(self, x):
  211. img_size = x.shape[-2:] # height, width
  212. s = [1, 1, 0.83, 0.83, 0.67, 0.67] # scales
  213. f = [None, 3, None, 3, None, 3] # flips (2-ud, 3-lr)
  214. y = [] # outputs
  215. for si, fi in zip(s, f):
  216. xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
  217. yi = self._forward_once(xi)[0] # forward
  218. # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
  219. yi = self._descale_pred(yi, fi, si, img_size)
  220. y.append(yi)
  221. y = self._clip_augmented(y) # clip augmented tails
  222. return torch.cat(y, 1), None # augmented inference, train
  223. def _forward_once(self, x, profile=False, visualize=False):
  224. y, dt = [], [] # outputs
  225. for m in self.model:
  226. if m.f != -1: # if not from previous layer
  227. x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
  228. if profile:
  229. self._profile_one_layer(m, x, dt)
  230. x = m(x) # run
  231. y.append(x if m.i in self.save else None) # save output
  232. if visualize and m.type == 'models.common.C3STR':
  233. print(visualize)
  234. feature_visualization(x, m.type, m.i, save_dir=visualize)
  235. return x
  236. def _descale_pred(self, p, flips, scale, img_size):
  237. # de-scale predictions following augmented inference (inverse operation)
  238. if self.inplace:
  239. p[..., :4] /= scale # de-scale
  240. if flips == 2:
  241. p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
  242. elif flips == 3:
  243. p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
  244. else:
  245. x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
  246. if flips == 2:
  247. y = img_size[0] - y # de-flip ud
  248. elif flips == 3:
  249. x = img_size[1] - x # de-flip lr
  250. p = torch.cat((x, y, wh, p[..., 4:]), -1)
  251. return p
  252. def _clip_augmented(self, y):
  253. # Clip YOLOv5 augmented inference tails
  254. nl = self.model[-1].nl # number of detection layers (P3-P5)
  255. g = sum(4 ** x for x in range(nl)) # grid points
  256. e = 1 # exclude layer count
  257. i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
  258. y[0] = y[0][:, :-i] # large
  259. i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
  260. y[-1] = y[-1][:, i:] # small
  261. return y
  262. def _profile_one_layer(self, m, x, dt):
  263. c = isinstance(m, Detect) # is final layer, copy input as inplace fix
  264. o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
  265. t = time_sync()
  266. for _ in range(10):
  267. m(x.copy() if c else x)
  268. dt.append((time_sync() - t) * 100)
  269. if m == self.model[0]:
  270. LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
  271. LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
  272. if c:
  273. LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
  274. def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
  275. # https://arxiv.org/abs/1708.02002 section 3.3
  276. # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
  277. m = self.model[-1] # Detect() module
  278. if isinstance(m, Detect):
  279. for mi, s in zip(m.m, m.stride): # from
  280. b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
  281. b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
  282. b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
  283. mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  284. else:
  285. for mi, s in zip(m.m, m.stride[1:]): # from
  286. b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
  287. b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
  288. b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
  289. mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  290. b = m.det.det.bias.view(m.na, -1) # conv.bias(255) to (3,85)
  291. b.data[:, 4] += math.log(8 / (640 / m.stride[0]) ** 2) # obj (8 objects per 640 image)
  292. b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
  293. m.det.det.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  294. def _print_biases(self):
  295. m = self.model[-1] # Detect() module
  296. if getattr(m.m, 'bias', False):
  297. for mi in m.m: # from
  298. b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
  299. LOGGER.info(
  300. ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
  301. else:
  302. for mi in m.m: # from
  303. b1 = mi.cls.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
  304. b2 = mi.bbox.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
  305. LOGGER.info(
  306. ('%6g Conv2d.bias and %6g Conv2d.bias:' + '%10.3g' * 6) % (mi.bbox.weight.shape[1], mi.cls.weight.shape[1], *b2[:].mean(1).tolist(), b1[:].mean()))
  307. # def _print_weights(self):
  308. # for m in self.model.modules():
  309. # if type(m) is Bottleneck:
  310. # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
  311. def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
  312. LOGGER.info('Fusing layers... ')
  313. for m in self.model.modules():
  314. if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
  315. m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
  316. delattr(m, 'bn') # remove batchnorm
  317. m.forward = m.forward_fuse # update forward
  318. self.info()
  319. return self
  320. def autoshape(self): # add AutoShape module
  321. LOGGER.info('Adding AutoShape... ')
  322. m = AutoShape(self) # wrap model
  323. copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
  324. return m
  325. def info(self, verbose=False, img_size=640): # print model information
  326. model_info(self, verbose, img_size)
  327. def _apply(self, fn):
  328. # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
  329. self = super()._apply(fn)
  330. m = self.model[-1] # Detect()
  331. if isinstance(m, Detect):
  332. m.stride = fn(m.stride)
  333. m.grid = list(map(fn, m.grid))
  334. if isinstance(m.anchor_grid, list):
  335. m.anchor_grid = list(map(fn, m.anchor_grid))
  336. return self
  337. def parse_model(d, ch): # model_dict, input_channels(3)
  338. LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
  339. anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
  340. na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
  341. no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
  342. layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
  343. for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
  344. m = eval(m) if isinstance(m, str) else m # eval strings
  345. for j, a in enumerate(args):
  346. try:
  347. args[j] = eval(a) if isinstance(a, str) else a # eval strings
  348. except NameError:
  349. pass
  350. n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
  351. if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
  352. BottleneckCSP, C3, C3TR, C3STR, C3SPP, C3Ghost, ASPP, CBAM, nn.ConvTranspose2d]:
  353. c1, c2 = ch[f], args[0]
  354. if c2 != no: # if not output
  355. c2 = make_divisible(c2 * gw, 8)
  356. args = [c1, c2, *args[1:]]
  357. if m in [BottleneckCSP, C3, C3TR, C3STR, C3Ghost]:
  358. args.insert(2, n) # number of repeats
  359. n = 1
  360. elif m is nn.BatchNorm2d:
  361. args = [ch[f]]
  362. elif m is Concat:
  363. c2 = sum(ch[x] for x in f)
  364. elif m is Detect:
  365. args.append([ch[x] for x in f])
  366. if isinstance(args[1], int): # number of anchors
  367. args[1] = [list(range(args[1] * 2))] * len(f)
  368. elif m is CLLADetect:
  369. args.append([ch[x] for x in f])
  370. if isinstance(args[1], int): # number of anchors
  371. args[1] = [list(range(args[1] * 2))] * (len(f) - 1)
  372. elif m is Contract:
  373. c2 = ch[f] * args[0] ** 2
  374. elif m is Expand:
  375. c2 = ch[f] // args[0] ** 2
  376. else:
  377. c2 = ch[f]
  378. m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
  379. t = str(m)[8:-2].replace('__main__.', '') # module type
  380. np = sum(x.numel() for x in m_.parameters()) # number params
  381. m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
  382. LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
  383. save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
  384. layers.append(m_)
  385. if i == 0:
  386. ch = []
  387. ch.append(c2)
  388. return nn.Sequential(*layers), sorted(save)
  389. if __name__ == '__main__':
  390. parser = argparse.ArgumentParser()
  391. parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
  392. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  393. parser.add_argument('--profile', action='store_true', help='profile model speed')
  394. opt = parser.parse_args()
  395. opt.cfg = check_yaml(opt.cfg) # check YAML
  396. print_args(FILE.stem, opt)
  397. device = select_device(opt.device)
  398. # Create model
  399. model = Model(opt.cfg).to(device)
  400. model.train()
  401. # Profile
  402. if opt.profile:
  403. img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
  404. y = model(img, profile=True)
  405. # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
  406. # from torch.utils.tensorboard import SummaryWriter
  407. # tb_writer = SummaryWriter('.')
  408. # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
  409. # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph