|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Experimental modules
- """
- import math
-
- import numpy as np
- import torch
- import torch.nn as nn
-
- from models.common import Conv
- from utils.downloads import attempt_download
-
-
- class CrossConv(nn.Module):
- # Cross Convolution Downsample
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
- class Sum(nn.Module):
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
- def __init__(self, n, weight=False): # n: number of inputs
- super().__init__()
- self.weight = weight # apply weights boolean
- self.iter = range(n - 1) # iter object
- if weight:
- self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
-
- def forward(self, x):
- y = x[0] # no weight
- if self.weight:
- w = torch.sigmoid(self.w) * 2
- for i in self.iter:
- y = y + x[i + 1] * w[i]
- else:
- for i in self.iter:
- y = y + x[i + 1]
- return y
-
-
- class MixConv2d(nn.Module):
- # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
- super().__init__()
- n = len(k) # number of convolutions
- if equal_ch: # equal c_ per group
- i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
- c_ = [(i == g).sum() for g in range(n)] # intermediate channels
- else: # equal weight.numel() per group
- b = [c2] + [0] * n
- a = np.eye(n + 1, n, k=-1)
- a -= np.roll(a, 1, axis=1)
- a *= np.array(k) ** 2
- a[0] = 1
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
-
- self.m = nn.ModuleList(
- [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU()
-
- def forward(self, x):
- return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
-
-
- class Ensemble(nn.ModuleList):
- # Ensemble of models
- def __init__(self):
- super().__init__()
-
- def forward(self, x, augment=False, profile=False, visualize=False):
- y = []
- for module in self:
- y.append(module(x, augment, profile, visualize)[0])
- # y = torch.stack(y).max(0)[0] # max ensemble
- # y = torch.stack(y).mean(0) # mean ensemble
- y = torch.cat(y, 1) # nms ensemble
- return y, None # inference, train output
-
-
- def attempt_load(weights, map_location=None, inplace=True, fuse=True):
- from models.yolo import Detect, Model
-
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
- model = Ensemble()
- for w in weights if isinstance(weights, list) else [weights]:
- ckpt = torch.load(attempt_download(w), map_location=map_location) # load
- if fuse:
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
- else:
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse
-
- # Compatibility updates
- for m in model.modules():
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
- m.inplace = inplace # pytorch 1.7.0 compatibility
- if type(m) is Detect:
- if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
- delattr(m, 'anchor_grid')
- setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
- elif type(m) is Conv:
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
-
- if len(model) == 1:
- return model[-1] # return model
- else:
- print(f'Ensemble created with {weights}\n')
- for k in ['names']:
- setattr(model, k, getattr(model[-1], k))
- model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
- return model # return ensemble
|