|
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Logging utils
- """
-
- import os
- import warnings
- from threading import Thread
-
- import pkg_resources as pkg
- import torch
- from torch.utils.tensorboard import SummaryWriter
-
- from utils.general import colorstr, emojis
- from utils.loggers.wandb.wandb_utils import WandbLogger
- from utils.plots import plot_images, plot_results
- from utils.torch_utils import de_parallel
-
- LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
- RANK = int(os.getenv('RANK', -1))
-
- try:
- import wandb
-
- assert hasattr(wandb, '__version__') # verify package import not local dir
- if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in [0, -1]:
- wandb_login_success = wandb.login(timeout=30)
- if not wandb_login_success:
- wandb = None
- except (ImportError, AssertionError):
- wandb = None
-
-
- class Loggers():
- # YOLOv5 Loggers class
- def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
- self.save_dir = save_dir
- self.weights = weights
- self.opt = opt
- self.hyp = hyp
- self.logger = logger # for printing results to console
- self.include = include
- self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
- 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
- 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
- 'x/lr0', 'x/lr1', 'x/lr2'] # params
- for k in LOGGERS:
- setattr(self, k, None) # init empty logger dictionary
- self.csv = True # always log to csv
-
- # Message
- if not wandb:
- prefix = colorstr('Weights & Biases: ')
- s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
- print(emojis(s))
-
- # TensorBoard
- s = self.save_dir
- if 'tb' in self.include and not self.opt.evolve:
- prefix = colorstr('TensorBoard: ')
- self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
- self.tb = SummaryWriter(str(s))
-
- # W&B
- if wandb and 'wandb' in self.include:
- wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
- run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
- self.opt.hyp = self.hyp # add hyperparameters
- self.wandb = WandbLogger(self.opt, run_id)
- else:
- self.wandb = None
-
- def on_pretrain_routine_end(self):
- # Callback runs on pre-train routine end
- paths = self.save_dir.glob('*labels*.jpg') # training labels
- if self.wandb:
- self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
-
- def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn):
- # Callback runs on train batch end
- if plots:
- if ni == 0:
- if not sync_bn: # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress jit trace warning
- self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
- if ni < 3:
- f = self.save_dir / f'train_batch{ni}.jpg' # filename
- Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
- if self.wandb and ni == 10:
- files = sorted(self.save_dir.glob('train*.jpg'))
- self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
-
- def on_train_epoch_end(self, epoch):
- # Callback runs on train epoch end
- if self.wandb:
- self.wandb.current_epoch = epoch + 1
-
- def on_val_image_end(self, pred, predn, path, names, im):
- # Callback runs on val image end
- if self.wandb:
- self.wandb.val_one_image(pred, predn, path, names, im)
-
- def on_val_end(self):
- # Callback runs on val end
- if self.wandb:
- files = sorted(self.save_dir.glob('val*.jpg'))
- self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
-
- def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
- # Callback runs at the end of each fit (train+val) epoch
- x = {k: v for k, v in zip(self.keys, vals)} # dict
- if self.csv:
- file = self.save_dir / 'results.csv'
- n = len(x) + 1 # number of cols
- s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
- with open(file, 'a') as f:
- f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
-
- if self.tb:
- for k, v in x.items():
- self.tb.add_scalar(k, v, epoch)
-
- if self.wandb:
- self.wandb.log(x)
- self.wandb.end_epoch(best_result=best_fitness == fi)
-
- def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
- # Callback runs on model save event
- if self.wandb:
- if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
- self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
-
- def on_train_end(self, last, best, plots, epoch, results):
- # Callback runs on training end
- if plots:
- plot_results(file=self.save_dir / 'results.csv') # save results.png
- files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
- files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
-
- if self.tb:
- import cv2
- for f in files:
- self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
-
- if self.wandb:
- self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
- # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
- if not self.opt.evolve:
- wandb.log_artifact(str(best if best.exists() else last), type='model',
- name='run_' + self.wandb.wandb_run.id + '_model',
- aliases=['latest', 'best', 'stripped'])
- self.wandb.finish_run()
- else:
- self.wandb.finish_run()
- self.wandb = WandbLogger(self.opt)
|