|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
-
- Usage:
- $ export PYTHONPATH="$PWD" && python models/export.py --weights yolov5s.pt --img 640 --batch 1
- """
-
- import argparse
- import sys
- import time
-
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
-
- import torch
- import torch.nn as nn
-
- import models
- from models.experimental import attempt_load
- from utils.activations import Hardswish, SiLU
- from utils.general import colorstr, check_img_size, check_requirements, set_logging
- from utils.torch_utils import select_device
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
- parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
- parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
- opt = parser.parse_args()
- opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
- print(opt)
- set_logging()
- t = time.time()
-
- # Load PyTorch model
- device = select_device(opt.device)
- model = attempt_load(opt.weights, map_location=device) # load FP32 model
- labels = model.names
-
- # Checks
- gs = int(max(model.stride)) # grid size (max stride)
- opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
-
- # Input
- img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
-
- # Update model
- for k, m in model.named_modules():
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
- if isinstance(m, models.common.Conv): # assign export-friendly activations
- if isinstance(m.act, nn.Hardswish):
- m.act = Hardswish()
- elif isinstance(m.act, nn.SiLU):
- m.act = SiLU()
- # elif isinstance(m, models.yolo.Detect):
- # m.forward = m.forward_export # assign forward (optional)
- model.model[-1].export = not opt.grid # set Detect() layer grid export
- y = model(img) # dry run
-
- # TorchScript export -----------------------------------------------------------------------------------------------
- prefix = colorstr('TorchScript:')
- try:
- print(f'\n{prefix} starting export with torch {torch.__version__}...')
- f = opt.weights.replace('.pt', '.torchscript.pt') # filename
- ts = torch.jit.trace(model, img, strict=False)
- ts.save(f)
- print(f'{prefix} export success, saved as {f}')
- except Exception as e:
- print(f'{prefix} export failure: {e}')
-
- # ONNX export ------------------------------------------------------------------------------------------------------
- prefix = colorstr('ONNX:')
- try:
- import onnx
-
- print(f'{prefix} starting export with onnx {onnx.__version__}...')
- f = opt.weights.replace('.pt', '.onnx') # filename
- torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
- output_names=['classes', 'boxes'] if y is None else ['output'],
- dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
- 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
-
- # Checks
- model_onnx = onnx.load(f) # load onnx model
- onnx.checker.check_model(model_onnx) # check onnx model
- # print(onnx.helper.printable_graph(model_onnx.graph)) # print
-
- # Simplify
- if opt.simplify:
- try:
- check_requirements(['onnx-simplifier'])
- import onnxsim
-
- print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
- model_onnx, check = onnxsim.simplify(model_onnx,
- dynamic_input_shape=opt.dynamic,
- input_shapes={'images': list(img.shape)} if opt.dynamic else None)
- assert check, 'assert check failed'
- onnx.save(model_onnx, f)
- except Exception as e:
- print(f'{prefix} simplifier failure: {e}')
- print(f'{prefix} export success, saved as {f}')
- except Exception as e:
- print(f'{prefix} export failure: {e}')
-
- # CoreML export ----------------------------------------------------------------------------------------------------
- prefix = colorstr('CoreML:')
- try:
- import coremltools as ct
-
- print(f'{prefix} starting export with coremltools {onnx.__version__}...')
- # convert model from torchscript and apply pixel scaling as per detect.py
- model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
- f = opt.weights.replace('.pt', '.mlmodel') # filename
- model.save(f)
- print(f'{prefix} export success, saved as {f}')
- except Exception as e:
- print(f'{prefix} export failure: {e}')
-
- # Finish
- print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|