Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. import tensorrt as trt
  2. import sys,os
  3. import cv2,glob,time
  4. import torch
  5. import utils
  6. import numpy as np
  7. import torch.nn.functional as F
  8. from ocrUtils2.ocrUtils import strLabelConverter , OcrTrtForward,np_resize_keepRation
  9. class ocrModel(object):
  10. def __init__(self, weights=None,
  11. par={
  12. #'cfg':'../AIlib2/weights/conf/OCR_Ch/360CC_config.yaml',
  13. 'char_file':'../AIlib2/weights/conf/OCR_Ch/Ch.txt',
  14. 'mode':'ch',
  15. 'nc':3,
  16. 'imgH':32,
  17. 'imgW':256,
  18. 'hidden':256,
  19. 'mean':[0.5,0.5,0.5],
  20. 'std':[0.5,0.5,0.5],
  21. 'dynamic':False,
  22. }
  23. ):
  24. self.par = par
  25. self.device = 'cuda:0'
  26. self.half =True
  27. self.dynamic = par['dynamic']
  28. self.par['modelSize'] = (par['imgW'], par['imgH'])
  29. with open(par['char_file'], 'r') as fp:
  30. alphabet = fp.read()
  31. #self.converter = utils.strLabelConverter(alphabet)
  32. self.converter = strLabelConverter(alphabet)
  33. self.nclass = len(alphabet) + 1
  34. if weights.endswith('.engine'):
  35. self.infer_type ='trt'
  36. elif weights.endswith('.pth') or weights.endswith('.pt') :
  37. self.infer_type ='pth'
  38. else:
  39. print('#########ERROR:',weights,': no registered inference type, exit')
  40. sys.exit(0)
  41. if self.infer_type=='trt':
  42. logger = trt.Logger(trt.Logger.ERROR)
  43. with open(weights, "rb") as f, trt.Runtime(logger) as runtime:
  44. self.model=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象
  45. #self.context = self.model.create_execution_context()
  46. elif self.infer_type=='pth':
  47. if par['mode']=='ch':
  48. import ocrUtils2.crnnCh as crnn
  49. self.model = crnn.CRNN(par['nc'], par['hidden'], self.nclass, par['imgH'])
  50. else:
  51. import ocrUtils2.crnn_model as crnn
  52. self.model = crnn.CRNN(par['imgH'], par['nc'], self.nclass,par['hidden'] )
  53. self.load_model_weights(weights)
  54. self.model = self.model.to(self.device)
  55. print('#######load pt model:%s success '%(weights))
  56. self.par['modelType']=self.infer_type
  57. print('#########加载模型:',weights,' 类型:',self.infer_type)
  58. def eval(self,image):
  59. t0 = time.time()
  60. image = self.preprocess_image(image)
  61. t1 = time.time()
  62. if self.infer_type=='pth':
  63. self.model.eval()
  64. preds = self.model(image)
  65. else:
  66. preds,trtstr=OcrTrtForward(self.model,[image],False)
  67. t2 = time.time()
  68. preds_size = torch.IntTensor([preds.size(0)]*1)
  69. preds = F.softmax(preds, dim=2)
  70. preds_score, preds = preds.max(2)
  71. #print('##line78:',preds,preds_score)
  72. preds = preds.transpose(1, 0).contiguous().view(-1)
  73. res_real = self.converter.decode(preds, preds_size, raw=False)
  74. t3 = time.time()
  75. timeInfos = 'total:%.1f (preProcess:%.1f ,inference:%.1f, postProcess:%.1f) '%( self.get_ms(t3,t0), self.get_ms(t1,t0), self.get_ms(t2,t1), self.get_ms(t3,t2), )
  76. return res_real,timeInfos
  77. def preprocess_image(self,image):
  78. if self.par['nc']==1:
  79. image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  80. else: image = image[:,:,::-1] #bgr-->rgb
  81. if self.dynamic:
  82. H,W = image.shape[0:2]
  83. image = cv2.resize(image, (0, 0), fx=self.par['modelSize'][1] / H, fy=self.par['modelSize'][1] / H, interpolation=cv2.INTER_CUBIC)
  84. else:
  85. re_size = self.par['modelSize']
  86. image = cv2.resize(image,re_size, interpolation=cv2.INTER_LINEAR)
  87. if self.infer_type=='trt':
  88. image = np_resize_keepRation(image,self.par['modelSize'][1] ,self.par['modelSize'][0] )
  89. image = image.astype(np.float32)
  90. image /= 255.0
  91. #print('####line105:',image.shape)
  92. if self.par['nc']==1:
  93. image = (image-self.par['mean'][0])/self.par['std'][0]
  94. image = np.expand_dims(image,0)
  95. else:
  96. image[:, :, 0] -= self.par['mean'][0]
  97. image[:, :, 1] -= self.par['mean'][1]
  98. image[:, :, 2] -= self.par['mean'][2]
  99. image[:, :, 0] /= self.par['std'][0]
  100. image[:, :, 1] /= self.par['std'][1]
  101. image[:, :, 2] /= self.par['std'][2]
  102. image = np.transpose(image, (2, 0, 1))
  103. image = torch.from_numpy(image).float()
  104. image = image.unsqueeze(0)
  105. if self.device != 'cpu':
  106. image = image.to(self.device)
  107. return image
  108. def get_ms(self,t1,t0):
  109. return (t1-t0)*1000.0
  110. def load_model_weights(self,weight):
  111. checkpoint = torch.load(weight)
  112. if 'state_dict' in checkpoint.keys():
  113. self.model.load_state_dict(checkpoint['state_dict'])
  114. else:
  115. try:
  116. self.model.load_state_dict(checkpoint)
  117. except:
  118. ##修正模型参数的名字
  119. state_dict = torch.load(weight)
  120. # create new OrderedDict that does not contain `module.`
  121. from collections import OrderedDict
  122. new_state_dict = OrderedDict()
  123. for k, v in state_dict.items():
  124. name = k[7:] # remove `module.`
  125. new_state_dict[name] = v
  126. # load params
  127. self.model.load_state_dict(new_state_dict)
  128. if __name__== "__main__":
  129. #weights = '/home/thsw2/WJ/src/OCR/benchmarking-chinese-text-recognition/weights/scene_base.pth'
  130. weights = '/mnt/thsw2/DSP2/weights/ocr2/crnn_ch_2080Ti_fp16_192X32.engine'
  131. par={
  132. #'cfg':'../AIlib2/weights/conf/OCR_Ch/360CC_config.yaml',
  133. 'char_file':'/home/thsw2/WJ/src/OCR/benchmarking-chinese-text-recognition/src/models/CRNN/data/benchmark.txt',
  134. 'mode':'ch',
  135. 'nc':3,
  136. 'imgH':32,
  137. 'imgW':192,
  138. 'hidden':256,
  139. 'mean':[0.5,0.5,0.5],
  140. 'std':[0.5,0.5,0.5],
  141. 'dynamic':False
  142. }
  143. inputDir = '/home/thsw2/WJ/src/OCR/shipNames'
  144. '''
  145. weights = '/home/thsw2/WJ/src/DSP2/AIlib2/weights/conf/ocr2/crnn_448X32.pth'
  146. #weights = '/mnt/thsw2/DSP2/weights/ocr2/crnn_en_2080Ti_fp16_448X32.engine'
  147. par={
  148. #'cfg':'../AIlib2/weights/conf/OCR_Ch/360CC_config.yaml',
  149. 'char_file':'/home/thsw2/WJ/src/DSP2/AIlib2/weights/conf/ocr2/chars2.txt',
  150. 'mode':'en',
  151. 'nc':1,
  152. 'imgH':32,
  153. 'imgW':448,
  154. 'hidden':256,
  155. 'mean':[0.588,0.588,0.588],
  156. 'std':[0.193,0.193,0.193 ],
  157. 'dynamic':True
  158. }
  159. inputDir='/home/thsw2/WJ/src/DSP2/AIdemo2/images/ocr_en'
  160. '''
  161. model = ocrModel(weights=weights,par=par )
  162. imgUrls = glob.glob('%s/*.jpg'%(inputDir))
  163. for imgUrl in imgUrls[0:]:
  164. img = cv2.imread(imgUrl)
  165. res_real,timeInfos = model.eval(img)
  166. res_real="".join( list(filter(lambda x:(ord(x) >19968 and ord(x)<63865 ) or (ord(x) >47 and ord(x)<58 ),res_real)))
  167. print(res_real,os.path.basename(imgUrl),timeInfos )