|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- from models.experimental import attempt_load
- import tensorrt as trt
- import sys
- from segutils.trtUtils import yolov5Trtforward
- from utilsK.queRiver import getDetectionsFromPreds,img_pad
- from utils.datasets import letterbox
- import numpy as np
- import torch,time
- def score_filter_byClass(pdetections,score_para_2nd):
- ret=[]
- for det in pdetections:
- score,cls = det[4],det[5]
- if int(cls) in score_para_2nd.keys():
- score_th = score_para_2nd[int(cls)]
- elif str(int(cls)) in score_para_2nd.keys():
- score_th = score_para_2nd[str(int(cls))]
- else:
- score_th = 0.7
- if score > score_th:
- ret.append(det)
- return ret
-
- class yolov5Model(object):
- def __init__(self, weights=None,par={}):
-
-
- self.par = par
- self.device = par['device']
- self.half =par['half']
-
- if weights.endswith('.engine'):
- self. infer_type ='trt'
- elif weights.endswith('.pth') or weights.endswith('.pt') :
- self. infer_type ='pth'
- else:
- print('#########ERROR:',weights,': no registered inference type, exit')
- sys.exit(0)
-
- if self.infer_type=='trt':
- logger = trt.Logger(trt.Logger.ERROR)
- with open(weights, "rb") as f, trt.Runtime(logger) as runtime:
- self.model=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象
- #print('####load TRT model :%s'%(weights))
- elif self.infer_type=='pth':
- self.model = attempt_load(weights, map_location=self.device) # load FP32 model
- if self.half: self.model.half()
-
- if 'score_byClass' in par.keys(): self.score_byClass = par['score_byClass']
- else: self.score_byClass = None
-
- print('#########加载模型:',weights,' 类型:',self.infer_type)
-
- def eval(self,image):
- t0=time.time()
- img = self.preprocess_image(image)
- t1=time.time()
- if self.infer_type=='trt':
- pred = yolov5Trtforward(self.model,img)
- else:
- pred = self.model(img,augment=False)[0]
-
- t2=time.time()
- if 'ovlap_thres_crossCategory' in self.par.keys():
- ovlap_thres = self.par['ovlap_thres_crossCategory']
- else:
- ovlap_thres = None
-
- p_result, timeOut = getDetectionsFromPreds(pred,img,image,conf_thres=self.par['conf_thres'],iou_thres=self.par['iou_thres'],ovlap_thres=ovlap_thres,padInfos=self.padInfos)
-
- if self.score_byClass:
- p_result[2] = score_filter_byClass(p_result[2],self.score_byClass)
-
- t3=time.time()
- timeOut = 'yolov5 :%.1f (pre-process:%.1f, inference:%.1f, post-process:%.1f) '%( self.get_ms(t3,t0) , self.get_ms(t1,t0) , self.get_ms(t2,t1) , self.get_ms(t3,t2) )
-
- return p_result[2], timeOut
-
- def get_ms(self,t1,t0):
- return (t1-t0)*1000.0
- def preprocess_image(self,image):
-
- if self.infer_type=='trt':
- img, padInfos = img_pad( image , size=(640,640,3)) ;img = [img]
- self.padInfos =padInfos
- else:
- img = [letterbox(x, 640, auto=True, stride=32)[0] for x in [image]];
- self.padInfos=None
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
- img = torch.from_numpy(img).to(self.device)
- img = img.half() if self.half else img.float() # uint8 to fp16/32
- img /= 255.0
- return img
-
|