|
1234567891011121314151617181920212223242526272829303132333435 |
- import torch.nn as nn
- from .modules import ResNet_FeatureExtractor, BidirectionalLSTM
-
- class Model(nn.Module):
-
- def __init__(self, input_channel, output_channel, hidden_size, num_class):
- super(Model, self).__init__()
- """ FeatureExtraction """
- self.FeatureExtraction = ResNet_FeatureExtractor(input_channel, output_channel)
- self.FeatureExtraction_output = output_channel # int(imgH/16-1) * 512
- self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1
-
- """ Sequence modeling"""
- self.SequenceModeling = nn.Sequential(
- BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size),
- BidirectionalLSTM(hidden_size, hidden_size, hidden_size))
- self.SequenceModeling_output = hidden_size
-
- """ Prediction """
- self.Prediction = nn.Linear(self.SequenceModeling_output, num_class)
-
-
- def forward(self, input, text):
- """ Feature extraction stage """
- visual_feature = self.FeatureExtraction(input)
- visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h]
- visual_feature = visual_feature.squeeze(3)
-
- """ Sequence modeling stage """
- contextual_feature = self.SequenceModeling(visual_feature)
-
- """ Prediction stage """
- prediction = self.Prediction(contextual_feature.contiguous())
-
- return prediction
|