import torch.nn as nn from .modules import ResNet_FeatureExtractor, BidirectionalLSTM class Model(nn.Module): def __init__(self, input_channel, output_channel, hidden_size, num_class): super(Model, self).__init__() """ FeatureExtraction """ self.FeatureExtraction = ResNet_FeatureExtractor(input_channel, output_channel) self.FeatureExtraction_output = output_channel # int(imgH/16-1) * 512 self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1 """ Sequence modeling""" self.SequenceModeling = nn.Sequential( BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size), BidirectionalLSTM(hidden_size, hidden_size, hidden_size)) self.SequenceModeling_output = hidden_size """ Prediction """ self.Prediction = nn.Linear(self.SequenceModeling_output, num_class) def forward(self, input, text): """ Feature extraction stage """ visual_feature = self.FeatureExtraction(input) visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h] visual_feature = visual_feature.squeeze(3) """ Sequence modeling stage """ contextual_feature = self.SequenceModeling(visual_feature) """ Prediction stage """ prediction = self.Prediction(contextual_feature.contiguous()) return prediction