import math import numpy as np import torch import time def dmpr_yolo( yolo_det, dmpr_det,pars): #if len(yolo_det)==0 or len(dmpr_det)==0: #print('line11:\n',yolo_det, dmpr_det,pars) time1=time.time() if len(yolo_det)==0: return yolo_det,' No yolo detections' img_shape = (pars['imgSize'][1],pars['imgSize'][0]) cls = pars['carCls']; scaleRatio = pars['scaleRatio'] illParkCls = pars['illCls'];border = pars['border'] yolo_det = np.array(yolo_det) yolo_det_0 = yolo_det.copy() #print('-'*10,'line17:',yolo_det_0) # 过滤在图像边界的box(防止出现类似一小半车辆的情况) x_c = (yolo_det[:, 0] + yolo_det[:, 2]) / 2 y_c = (yolo_det[:, 1] + yolo_det[:, 3]) / 2 tmp = (x_c >= border) & (x_c <= (img_shape[1] - border)) & (y_c >= border) & (y_c <= (img_shape[0] - border)) yolo_det = yolo_det[tmp] # 创建yolo_det_clone内容为x1, y1, x2, y2, conf, cls, unlabel (unlabel代表该类是否需要忽略,0:不忽略 其他:忽略) yolo_det_clone = yolo_det.copy() tmp_0_tensor = np.zeros([len(yolo_det), 1]) yolo_det_clone = np.concatenate([yolo_det_clone, tmp_0_tensor], axis=1) # cls为需要计算的类别 yolo_det = yolo_det[yolo_det[:, -1] == cls] # new_yolo_det为膨胀后数据,内容为x1, y1, x2, y2, flag (flag代表膨胀后车位内是否包含角点 且 与角点方向差值小于90度, 其值为第一个满足条件的角点索引) new_yolo_det = np.zeros([len(yolo_det), 7]) # yolo框膨胀,长的边两边各膨胀0.4倍总长,短的边两边各膨胀0.2倍总长 x_length = yolo_det[:, 2] - yolo_det[:, 0] #x2-x1 y_length = yolo_det[:, 3] - yolo_det[:, 1] #y2-y1 # x, y哪个方向差值大哪个方向膨胀的多 x_dilate_coefficient = ((x_length > y_length) + 1)*scaleRatio y_dilate_coefficient = ((~(x_length > y_length)) + 1)*scaleRatio # 原始框中心点x_c, y_c new_yolo_det[:, 5] = (yolo_det[:, 0] + yolo_det[:, 2]) / 2 new_yolo_det[:, 6] = (yolo_det[:, 1] + yolo_det[:, 3]) / 2 # 膨胀 new_yolo_det[:, 0] = np.round(yolo_det[:, 0] - x_dilate_coefficient * x_length).clip(0, img_shape[1]) #x1 膨胀 new_yolo_det[:, 1] = np.round(yolo_det[:, 1] - y_dilate_coefficient * y_length).clip(0, img_shape[0]) #y1 膨胀 new_yolo_det[:, 2] = np.round(yolo_det[:, 2] + x_dilate_coefficient * x_length).clip(0, img_shape[1]) #x2 膨胀 new_yolo_det[:, 3] = np.round(yolo_det[:, 3] + y_dilate_coefficient * y_length).clip(0, img_shape[0]) #y2 膨胀 m, n = new_yolo_det.size, dmpr_det.size if not m or not n: #print('##line47 original yolo_det_clone:',yolo_det_clone) yolo_det_clone[np.logical_and( yolo_det_clone[:,-1]==0,yolo_det_clone[:,-2]==cls),-2] = illParkCls #yolo_det_clone[yolo_det_clone[:, -1] == 0 & yolo_det_clone[:, -2==cls] , -2] = illParkCls return yolo_det_clone[:,0:6], ' no cars or T/L corners' new_yolo = new_yolo_det[:, np.newaxis, :].repeat(dmpr_det.shape[0], 1) # 扩展为 (m , n, 5) dmpr_det = dmpr_det[np.newaxis, ...].repeat(new_yolo_det.shape[0], 0) yolo_dmpr = np.concatenate((new_yolo, dmpr_det), axis=2) # (m, n, 10) x_p, y_p = yolo_dmpr[..., 8], yolo_dmpr[..., 9] x1, y1, x2, y2 = yolo_dmpr[..., 0], yolo_dmpr[..., 1], yolo_dmpr[..., 2], yolo_dmpr[..., 3] x_c, y_c = yolo_dmpr[..., 5], yolo_dmpr[..., 6] direction1 = np.arctan2(y_c - y_p, x_c - x_p) / math.pi * 180 direction2 = yolo_dmpr[..., 10] / math.pi * 180 direction3 = direction2 + 90 # L形角点另外一个方向 direction3[direction3 > 180] -= 360 ang_diff = direction1 - direction2 ang_diff2 = direction1 - direction3 # 判断膨胀后yolo框包含角点关系 && 包含角点的时候计算水平框中心点与角点的角度关系 # direction ∈ (-180, 180) 若角差大于180,需算补角 # T形角点比较一个方向,L形角点比较两个方向 mask = (x_p >= x1) & (x_p <= x2) & (y_p >= y1) & (y_p <= y2) & \ (((yolo_dmpr[..., 11] <= 0.5) & # T形角点情况 (((ang_diff >= -90) & (ang_diff <= 90)) | ((ang_diff > 180) & ((360 - ang_diff) <= 90)) | (((ang_diff) < -180) & ((360 + ang_diff) <= 90)))) | ((yolo_dmpr[..., 11] > 0.5) & # L形角点情况 (((ang_diff >= -90) & (ang_diff <= 90)) | ((ang_diff > 180) & ((360 - ang_diff) <= 90)) | (((ang_diff) < -180) & ((360 + ang_diff) <= 90))) & (((ang_diff2 >= -90) & (ang_diff2 <= 90)) | ((ang_diff2 > 180) & ((360 - ang_diff2) <= 90)) | (((ang_diff2) < -180) & ((360 + ang_diff2) <= 90))))) res = np.sum(mask, axis=1) yolo_det_clone[yolo_det_clone[:, -2] == cls, -1] = res #print('##line69 original yolo_det_clone:',yolo_det_clone) #yolo_det_clone[yolo_det_clone[:, -1] == 0, -2] = illParkCls #print('-'*20,'--line78',yolo_det_clone) yolo_det_clone[ np.logical_and( yolo_det_clone[:,-1]==0,yolo_det_clone[:,-2]==cls) ,-2 ] = illParkCls #print('-'*20,'--line80:',yolo_det_clone) yolo_det_clone = yolo_det_clone[:,0:6] time2=time.time() return np.array(yolo_det_clone), 'dmpr_yolo:%.1f'%( (time2-time1)*1000 ) def stdc_yolo(stdc_det, yolo_det): im = np.uint8(stdc_det) x_c = ((yolo_det[:, 0] + yolo_det[:, 2]) // 2).astype(int) y_c = ((yolo_det[:, 1] + yolo_det[:, 3]) // 2).astype(int) yolo_filted = yolo_det[im[y_c, x_c] == 0] return yolo_filted def dmpr_yolo_stdc(predsList,pars): if len(predsList)==2: yolo_det, dmpr_det = predsList[0:2] else: yolo_det, dmpr_det,stdc_det = predsList[0:3] if len(yolo_det)==0: return yolo_det,' No yolo detections' if isinstance(yolo_det,list): yolo_det = np.array(yolo_det) if len(predsList)>2: yolo_det = stdc_yolo(stdc_det, yolo_det) return dmpr_yolo(yolo_det, dmpr_det,pars)