import torch import argparse import sys,os from torchvision import transforms import cv2,glob import numpy as np import matplotlib.pyplot as plt import time from pathlib import Path from concurrent.futures import ThreadPoolExecutor import tensorrt as trt #import pycuda.driver as cuda def get_largest_contours(contours): areas = [cv2.contourArea(x) for x in contours] max_area = max(areas) max_id = areas.index(max_area) return max_id def infer_usage(): image_url = '/home/thsw2/WJ/data/THexit/val/images/DJI_0645.JPG' nclass = 2 #weights = '../weights/segmentation/BiSeNet/checkpoint.pth' #weights = '../weights/BiSeNet/checkpoint.pth' #segmodel = SegModel_BiSeNet(nclass=nclass,weights=weights) weights = '../weights/BiSeNet/checkpoint_640X360_epo33.pth' segmodel = SegModel_BiSeNet(nclass=nclass,weights=weights,modelsize=(640,360)) image_urls=glob.glob('../../../../data/无人机起飞测试图像/*') out_dir ='results/'; os.makedirs(out_dir,exist_ok=True) for im,image_url in enumerate(image_urls[0:]): #image_url = '/home/thsw2/WJ/data/THexit/val/images/54(199).JPG' image_array0 = cv2.imread(image_url) H,W,C = image_array0.shape time_1=time.time() pred,outstr = segmodel.eval(image_array0 ) #plt.figure(1);plt.imshow(pred); #plt.show() binary0 = pred.copy() time0 = time.time() contours, hierarchy = cv2.findContours(binary0,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) max_id = -1 if len(contours)>0: max_id = get_largest_contours(contours) binary0[:,:] = 0 cv2.fillPoly(binary0, [contours[max_id][:,0,:]], 1) time1 = time.time() time2 = time.time() cv2.drawContours(image_array0,contours,max_id,(0,255,255),3) time3 = time.time() out_url='%s/%s'%(out_dir,os.path.basename(image_url)) ret = cv2.imwrite(out_url,image_array0) time4 = time.time() print('image:%d,%s ,%d*%d,eval:%.1f ms, %s,findcontours:%.1f ms,draw:%.1f total:%.1f'%(im,os.path.basename(image_url),H,W,get_ms(time0,time_1),outstr,get_ms(time1,time0), get_ms(time3,time2),get_ms(time3,time_1)) ) def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string colors = {'black': '\033[30m', # basic colors 'red': '\033[31m', 'green': '\033[32m', 'yellow': '\033[33m', 'blue': '\033[34m', 'magenta': '\033[35m', 'cyan': '\033[36m', 'white': '\033[37m', 'bright_black': '\033[90m', # bright colors 'bright_red': '\033[91m', 'bright_green': '\033[92m', 'bright_yellow': '\033[93m', 'bright_blue': '\033[94m', 'bright_magenta': '\033[95m', 'bright_cyan': '\033[96m', 'bright_white': '\033[97m', 'end': '\033[0m', # misc 'bold': '\033[1m', 'underline': '\033[4m'} return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] def file_size(path): # Return file/dir size (MB) path = Path(path) if path.is_file(): return path.stat().st_size / 1E6 elif path.is_dir(): return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6 else: return 0.0 def toONNX(seg_model,onnxFile,inputShape=(1,3,360,640),device=torch.device('cuda:0')): print('####begin to export to onnx') import onnx im = torch.rand(inputShape).to(device) seg_model.eval() text_for_pred = torch.LongTensor(1, 90).fill_(0).to(device) out=seg_model(im) print('###test model infer example####') train=False dynamic = False opset=11 torch.onnx.export(seg_model, (im),onnxFile, opset_version=opset, training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, do_constant_folding=not train, input_names=['images'], output_names=['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) } if dynamic else None) #torch.onnx.export(model, (dummy_input, dummy_text), "vitstr.onnx", verbose=True) print('output onnx file:',onnxFile) def ONNXtoTrt(onnxFile,trtFile,half=True): import tensorrt as trt #onnx = Path('../weights/BiSeNet/checkpoint.onnx') #onnxFile = Path('../weights/STDC/model_maxmIOU75_1720_0.946_360640.onnx') time0=time.time() #half=True; verbose=True;workspace=4;prefix=colorstr('TensorRT:') #f = onnx.with_suffix('.engine') # TensorRT engine file f=trtFile logger = trt.Logger(trt.Logger.INFO) if verbose: logger.min_severity = trt.Logger.Severity.VERBOSE builder = trt.Builder(logger) config = builder.create_builder_config() config.max_workspace_size = workspace * 1 << 30 flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) network = builder.create_network(flag) parser = trt.OnnxParser(network, logger) if not parser.parse_from_file(str(onnxFile)): raise RuntimeError('failed to load ONNX file: %s'%( onnxFile )) inputs = [network.get_input(i) for i in range(network.num_inputs)] outputs = [network.get_output(i) for i in range(network.num_outputs)] print(f'{prefix} Network Description:') for inp in inputs: print(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}') for out in outputs: print(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}') half &= builder.platform_has_fast_fp16 print(f'{prefix} building FP{16 if half else 32} engine in {f}') if half: config.set_flag(trt.BuilderFlag.FP16) with builder.build_engine(network, config) as engine, open(f, 'wb') as t: t.write(engine.serialize()) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') time1=time.time() print('output trtfile from ONNX, time:%.4f s, half: ,'%(time1-time0),trtFile,half) def ONNX_eval(): import onnx import numpy as np import onnxruntime as ort import cv2 #model_path = '../weights/BiSeNet/checkpoint.onnx';modelSize=(512,512);mean=(0.335, 0.358, 0.332),std = (0.141, 0.138, 0.143) model_path = '../weights/STDC/model_maxmIOU75_1720_0.946_360640.onnx';modelSize=(640,360);mean = (0.485, 0.456, 0.406);std = (0.229, 0.224, 0.225) # 验证模型合法性 onnx_model = onnx.load(model_path) onnx.checker.check_model(onnx_model) # 读入图像并调整为输入维度 img = cv2.imread("../../river_demo/images/slope/菜地_20220713_青年河8_4335_1578.jpg") H,W,C=img.shape img = cv2.resize(img,modelSize).transpose(2,0,1) img = np.array(img)[np.newaxis, :, :, :].astype(np.float32) # 设置模型session以及输入信息 sess = ort.InferenceSession(model_path,providers= ort.get_available_providers()) print('len():',len( sess.get_inputs() )) input_name1 = sess.get_inputs()[0].name #input_name2 = sess.get_inputs()[1].name #input_name3 = sess.get_inputs()[2].name #output = sess.run(None, {input_name1: img, input_name2: img, input_name3: img}) output = sess.run(None, {input_name1: img}) pred = np.argmax(output[0], axis=1)[0]#得到每行 pred = cv2.resize(pred.astype(np.uint8),(W,H)) #plt.imshow(pred);plt.show() print( 'type:',type(output) , output[0].shape, output[0].dtype ) #weights = Path('../weights/BiSeNet/checkpoint.engine') half = False;device = 'cuda:0' image_url = '/home/thsw2/WJ/data/THexit/val/images/DJI_0645.JPG' #image_urls=glob.glob('../../river_demo/images/slope/*') image_urls=glob.glob('../../../../data/无人机起飞测试图像/*') #out_dir ='../../river_demo/images/results/' out_dir ='results' os.makedirs(out_dir,exist_ok=True) for im,image_url in enumerate(image_urls[0:]): image_array0 = cv2.imread(image_url) #img=segPreProcess_image(image_array0).to(device) img=segPreProcess_image(image_array0,modelSize=modelSize,mean=mean,std=std,numpy=True) #img = cv2.resize(img,(512,512)).transpose(2,0,1) img = np.array(img)[np.newaxis, :, :, :].astype(np.float32) H,W,C = image_array0.shape time_1=time.time() #pred,outstr = segmodel.eval(image_array0 ) output = sess.run(None, {input_name1: img}) pred =output[0] #pred = model(img, augment=False, visualize=False) #pred = pred.data.cpu().numpy() pred = np.argmax(pred, axis=1)[0]#得到每行 pred = cv2.resize(pred.astype(np.uint8),(W,H)) outstr='###---###' binary0 = pred.copy() time0 = time.time() contours, hierarchy = cv2.findContours(binary0,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) max_id = -1 if len(contours)>0: max_id = get_largest_contours(contours) binary0[:,:] = 0 cv2.fillPoly(binary0, [contours[max_id][:,0,:]], 1) time1 = time.time() time2 = time.time() cv2.drawContours(image_array0,contours,max_id,(0,255,255),3) time3 = time.time() out_url='%s/%s'%(out_dir,os.path.basename(image_url)) ret = cv2.imwrite(out_url,image_array0) time4 = time.time() print('image:%d,%s ,%d*%d,eval:%.1f ms, %s,findcontours:%.1f ms,draw:%.1f total:%.1f'%(im,os.path.basename(image_url),H,W,get_ms(time0,time_1),outstr,get_ms(time1,time0), get_ms(time3,time2),get_ms(time3,time_1)) ) print('outimage:',out_url) def EngineInfer_onePic_thread(pars_thread): engine,image_array0,out_dir,image_url,im = pars_thread[0:6] H,W,C = image_array0.shape time0=time.time() time1=time.time() # 运行模型 pred,segInfoStr=segtrtEval(engine,image_array0,par={'modelSize':(640,360),'mean':(0.485, 0.456, 0.406),'std' :(0.229, 0.224, 0.225),'numpy':False, 'RGB_convert_first':True}) pred = 1 - pred time2=time.time() outstr='###---###' binary0 = pred.copy() time3 = time.time() contours, hierarchy = cv2.findContours(binary0,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) max_id = -1 #if len(contours)>0: # max_id = get_largest_contours(contours) # binary0[:,:] = 0 # cv2.fillPoly(binary0, [contours[max_id][:,0,:]], 1) time4 = time.time() cv2.drawContours(image_array0,contours,max_id,(0,255,255),3) time5 = time.time() out_url='%s/%s'%(out_dir,os.path.basename(image_url)) ret = cv2.imwrite(out_url,image_array0) time6 = time.time() print('image:%d,%s ,%d*%d, %s,,findcontours:%.1f ms,draw:%.1f total:%.1f'%(im,os.path.basename(image_url),H,W,segInfoStr, get_ms(time4,time3),get_ms(time5,time4),get_ms(time5,time0) )) return 'success' def trt_version(): return trt.__version__ def torch_device_from_trt(device): if device == trt.TensorLocation.DEVICE: return torch.device("cuda") elif device == trt.TensorLocation.HOST: return torch.device("cpu") else: return TypeError("%s is not supported by torch" % device) def torch_dtype_from_trt(dtype): if dtype == trt.int8: return torch.int8 elif trt_version() >= '7.0' and dtype == trt.bool: return torch.bool elif dtype == trt.int32: return torch.int32 elif dtype == trt.float16: return torch.float16 elif dtype == trt.float32: return torch.float32 else: raise TypeError("%s is not supported by torch" % dtype) def TrtForward(engine,inputs,contextFlag=False): t0=time.time() #with engine.create_execution_context() as context: if not contextFlag: context = engine.create_execution_context() else: context=contextFlag input_names=['images'];output_names=['output'] batch_size = inputs[0].shape[0] bindings = [None] * (len(input_names) + len(output_names)) t1=time.time() # 创建输出tensor,并分配内存 outputs = [None] * len(output_names) for i, output_name in enumerate(output_names): idx = engine.get_binding_index(output_name)#通过binding_name找到对应的input_id dtype = torch_dtype_from_trt(engine.get_binding_dtype(idx))#找到对应的数据类型 shape = (batch_size,) + tuple(engine.get_binding_shape(idx))#找到对应的形状大小 device = torch_device_from_trt(engine.get_location(idx)) output = torch.empty(size=shape, dtype=dtype, device=device) #print('&'*10,'device:',device,'idx:',idx,'shape:',shape,'dtype:',dtype,' device:',output.get_device()) outputs[i] = output #print('###line65:',output_name,i,idx,dtype,shape) bindings[idx] = output.data_ptr()#绑定输出数据指针 t2=time.time() for i, input_name in enumerate(input_names): idx =engine.get_binding_index(input_name) bindings[idx] = inputs[0].contiguous().data_ptr()#应当为inputs[i],对应3个输入。但由于我们使用的是单张图片,所以将3个输入全设置为相同的图片。 #print('#'*10,'input_names:,', input_name,'idx:',idx, inputs[0].dtype,', inputs[0] device:',inputs[0].get_device()) t3=time.time() context.execute_v2(bindings) # 执行推理 t4=time.time() if len(outputs) == 1: outputs = outputs[0] outstr='create Context:%.2f alloc memory:%.2f prepare input:%.2f conext infer:%.2f, total:%.2f'%((t1-t0 )*1000 , (t2-t1)*1000,(t3-t2)*1000,(t4-t3)*1000, (t4-t0)*1000 ) return outputs[0],outstr def EngineInfer(par): modelSize=par['modelSize'];mean = par['mean'] ;std = par['std'] ;RGB_convert_first=par['RGB_convert_first'];device=par['device'] weights=par['weights']; image_dir=par['image_dir'] max_threads=par['max_threads'] image_urls=glob.glob('%s/*'%(image_dir)) out_dir =par['out_dir'] os.makedirs(out_dir,exist_ok=True) #trt_model = SegModel_STDC_trt(weights=weights,modelsize=modelSize,std=std,mean=mean,device=device) logger = trt.Logger(trt.Logger.ERROR) with open(weights, "rb") as f, trt.Runtime(logger) as runtime: engine=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象 print('#####load TRT file:',weights,'success #####') pars_thread=[] pars_threads=[] for im,image_url in enumerate(image_urls[0:]): image_array0 = cv2.imread(image_url) pars_thread=[engine,image_array0,out_dir,image_url,im] pars_threads.append(pars_thread) #EngineInfer_onePic_thread(pars_thread) t1=time.time() if max_threads==1: for i in range(len(pars_threads[0:])): EngineInfer_onePic_thread(pars_threads[i]) else: with ThreadPoolExecutor(max_workers=max_threads) as t: for result in t.map(EngineInfer_onePic_thread, pars_threads): tt=result t2=time.time() print('All %d images time:%.1f ms, each:%.1f ms , with %d threads'%(len(image_urls),(t2-t1)*1000, (t2-t1)*1000.0/len(image_urls), max_threads) ) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='stdc_360X640.pth', help='model path(s)') opt = parser.parse_args() print( opt.weights ) #pthFile = Path('../../../yolov5TRT/weights/river/stdc_360X640.pth') pthFile = Path(opt.weights) onnxFile = pthFile.with_suffix('.onnx') trtFile = onnxFile.with_suffix('.engine') nclass = 2; device=torch.device('cuda:0'); '''###BiSeNet weights = '../weights/BiSeNet/checkpoint.pth';;inputShape =(1, 3, 512,512) segmodel = SegModel_BiSeNet(nclass=nclass,weights=weights) seg_model=segmodel.model ''' ##STDC net weights = pthFile segmodel = SegModel_STDC(nclass=nclass,weights=weights);inputShape =(1, 3, 360,640)#(bs,channels,height,width) seg_model=segmodel.model par={'modelSize':(inputShape[3],inputShape[2]),'mean':(0.485, 0.456, 0.406),'std':(0.229, 0.224, 0.225),'RGB_convert_first':True, 'weights':trtFile,'device':device,'max_threads':1, 'image_dir':'../../river_demo/images/road','out_dir' :'results'} #infer_usage() toONNX(seg_model,onnxFile,inputShape=inputShape,device=device) ONNXtoTrt(onnxFile,trtFile) #EngineInfer(par) #ONNX_eval()