|
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- """
- Mostly copy-paste from torchvision references.
- """
- import torch
- import torch.nn as nn
-
-
- __all__ = [
- 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
- 'vgg19_bn', 'vgg19',
- ]
-
-
- model_urls = {
- 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
- 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
- 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
- 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
- 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
- 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
- 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
- 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
- }
-
- model_paths = {
- 'vgg16_bn': './vggWeights/vgg16_bn-6c64b313.pth',
- 'vgg16': './vggWeights/vgg16-397923af.pth',
- }
-
-
- class VGG(nn.Module):
-
- def __init__(self, features, num_classes=1000, init_weights=True):
- super(VGG, self).__init__()
- self.features = features
- self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
- self.classifier = nn.Sequential(
- nn.Linear(512 * 7 * 7, 4096),
- nn.ReLU(True),
- nn.Dropout(),
- nn.Linear(4096, 4096),
- nn.ReLU(True),
- nn.Dropout(),
- nn.Linear(4096, num_classes),
- )
- if init_weights:
- self._initialize_weights()
-
- def forward(self, x):
- x = self.features(x)
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.classifier(x)
- return x
-
- def _initialize_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- nn.init.constant_(m.bias, 0)
-
-
- def make_layers(cfg, batch_norm=False, sync=False):
- layers = []
- in_channels = 3
- for v in cfg:
- if v == 'M':
- layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
- else:
- conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
- if batch_norm:
- if sync:
- print('use sync backbone')
- layers += [conv2d, nn.SyncBatchNorm(v), nn.ReLU(inplace=True)]
- else:
- layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
- else:
- layers += [conv2d, nn.ReLU(inplace=True)]
- in_channels = v
- return nn.Sequential(*layers)
-
-
- cfgs = {
- 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
- 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
- }
-
-
- def _vgg(arch, cfg, batch_norm, pretrained, progress, sync=False, **kwargs):
- if pretrained:
- kwargs['init_weights'] = False
- model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm, sync=sync), **kwargs)
- if pretrained:
- state_dict = torch.load(model_paths[arch])
- model.load_state_dict(state_dict)
- return model
-
-
- def vgg11(pretrained=False, progress=True, **kwargs):
- r"""VGG 11-layer model (configuration "A") from
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs)
-
-
- def vgg11_bn(pretrained=False, progress=True, **kwargs):
- r"""VGG 11-layer model (configuration "A") with batch normalization
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs)
-
-
- def vgg13(pretrained=False, progress=True, **kwargs):
- r"""VGG 13-layer model (configuration "B")
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs)
-
-
- def vgg13_bn(pretrained=False, progress=True, **kwargs):
- r"""VGG 13-layer model (configuration "B") with batch normalization
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs)
-
-
- def vgg16(pretrained=False, progress=True, **kwargs):
- r"""VGG 16-layer model (configuration "D")
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)
-
-
- def vgg16_bn(pretrained=False, progress=True, sync=False, **kwargs):
- r"""VGG 16-layer model (configuration "D") with batch normalization
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg16_bn', 'D', True, pretrained, progress, sync=sync, **kwargs)
-
-
- def vgg19(pretrained=False, progress=True, **kwargs):
- r"""VGG 19-layer model (configuration "E")
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs)
-
-
- def vgg19_bn(pretrained=False, progress=True, **kwargs):
- r"""VGG 19-layer model (configuration 'E') with batch normalization
- `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs)
|