|
- import torch
- import torch.nn as nn
-
- try:
- from torch.hub import load_state_dict_from_url
- except ImportError:
- from torch.utils.model_zoo import load_url as load_state_dict_from_url
-
-
- __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
- 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
- 'wide_resnet50_2', 'wide_resnet101_2']
-
-
- model_urls = {
- 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
- 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
- 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
- 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
- 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
- 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
- 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
- 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
- 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
- }
-
-
- def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=dilation, groups=groups, bias=False, dilation=dilation)
-
-
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
- __constants__ = ['downsample']
-
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(BasicBlock, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- if groups != 1 or base_width != 64:
- raise ValueError('BasicBlock only supports groups=1 and base_width=64')
- if dilation > 1:
- raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
-
-
- class Bottleneck(nn.Module):
- expansion = 4
- __constants__ = ['downsample']
-
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(Bottleneck, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.)) * groups
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
-
-
- class ResNet(nn.Module):
-
- def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
- groups=1, width_per_group=64, replace_stride_with_dilation=None,
- norm_layer=None):
- super(ResNet, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
-
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- # each element in the tuple indicates if we should replace
- # the 2x2 stride with a dilated convolution instead
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError("replace_stride_with_dilation should be None "
- "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
- dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
- dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
- dilate=replace_stride_with_dilation[2])
- # self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- # self.fc = nn.Linear(512 * block.expansion, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- # Zero-initialize the last BN in each residual branch,
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck):
- nn.init.constant_(m.bn3.weight, 0)
- elif isinstance(m, BasicBlock):
- nn.init.constant_(m.bn2.weight, 0)
-
- def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes, groups=self.groups,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- feat = []
- feat.append(x) # C0
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- feat.append(x) # C1
- x = self.maxpool(x)
-
- x = self.layer1(x)
- feat.append(x) # C2
- x = self.layer2(x)
- feat.append(x) # C3
- x = self.layer3(x)
- feat.append(x) # C4
- x = self.layer4(x)
- feat.append(x) # C5
-
-
- # x = self.avgpool(x)
- # x = torch.flatten(x, 1)
- # x = self.fc(x)
- #
- return feat
-
-
- def _resnet(arch, block, layers, pretrained, progress, **kwargs):
- model = ResNet(block, layers, **kwargs)
- if pretrained:
- state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
- model.load_state_dict(state_dict, strict=False)
- return model
-
-
- def resnet18(pretrained=False, progress=True, **kwargs):
- r"""ResNet-18 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
- **kwargs)
-
-
- def resnet34(pretrained=False, progress=True, **kwargs):
- r"""ResNet-34 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
- **kwargs)
-
-
- def resnet50(pretrained=False, progress=True, **kwargs):
- r"""ResNet-50 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
- **kwargs)
-
-
- def resnet101(pretrained=False, progress=True, **kwargs):
- r"""ResNet-101 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
- **kwargs)
-
-
- def resnet152(pretrained=False, progress=True, **kwargs):
- r"""ResNet-152 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
- **kwargs)
-
-
- def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
- r"""ResNeXt-50 32x4d model from
- `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs['groups'] = 32
- kwargs['width_per_group'] = 4
- return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
- pretrained, progress, **kwargs)
-
-
- def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
- r"""ResNeXt-101 32x8d model from
- `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs['groups'] = 32
- kwargs['width_per_group'] = 8
- return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
- pretrained, progress, **kwargs)
-
-
- def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
- r"""Wide ResNet-50-2 model from
- `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
-
- The model is the same as ResNet except for the bottleneck number of channels
- which is twice larger in every block. The number of channels in outer 1x1
- convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
- channels, and in Wide ResNet-50-2 has 2048-1024-2048.
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs['width_per_group'] = 64 * 2
- return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
- pretrained, progress, **kwargs)
-
-
- def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
- r"""Wide ResNet-101-2 model from
- `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
-
- The model is the same as ResNet except for the bottleneck number of channels
- which is twice larger in every block. The number of channels in outer 1x1
- convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
- channels, and in Wide ResNet-50-2 has 2048-1024-2048.
-
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs['width_per_group'] = 64 * 2
- return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
- pretrained, progress, **kwargs)
|