|
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- class BidirectionalLSTM(nn.Module):
- # Inputs hidden units Out
- def __init__(self, nIn, nHidden, nOut):
- super(BidirectionalLSTM, self).__init__()
-
- self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
- self.embedding = nn.Linear(nHidden * 2, nOut)
-
- def forward(self, input):
- recurrent, _ = self.rnn(input)
- T, b, h = recurrent.size()
- t_rec = recurrent.view(T * b, h)
-
- output = self.embedding(t_rec) # [T * b, nOut]
- output = output.view(T, b, -1)
-
- return output
-
- class CRNN(nn.Module):
- def __init__(self, imgH, nc, nclass, nh, n_rnn=2, leakyRelu=False):
- super(CRNN, self).__init__()
-
- assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
-
- ks = [3, 3, 3, 3, 3, 3, 2]
- ps = [1, 1, 1, 1, 1, 1, 0]
- ss = [1, 1, 1, 1, 1, 1, 1]
- nm = [64, 128, 256, 256, 512, 512, 512]
-
- cnn = nn.Sequential()
-
- def convRelu(i, batchNormalization=False):
- nIn = nc if i == 0 else nm[i - 1]
- nOut = nm[i]
- cnn.add_module('conv{0}'.format(i),
- nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i]))
- if batchNormalization:
- cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut))
- if leakyRelu:
- cnn.add_module('relu{0}'.format(i),
- nn.LeakyReLU(0.2, inplace=True))
- else:
- cnn.add_module('relu{0}'.format(i), nn.ReLU(True))
-
- convRelu(0)
- cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) # 64x16x64
- convRelu(1)
- cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) # 128x8x32
- convRelu(2, True)
- convRelu(3)
- cnn.add_module('pooling{0}'.format(2),
- nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 256x4x16
- convRelu(4, True)
- convRelu(5)
- cnn.add_module('pooling{0}'.format(3),
- nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 512x2x16
- convRelu(6, True) # 512x1x16
-
- self.cnn = cnn
- self.rnn = nn.Sequential(
- BidirectionalLSTM(512, nh, nh),
- BidirectionalLSTM(nh, nh, nclass))
-
- def forward(self, input):
-
- # conv features
- conv = self.cnn(input)
- b, c, h, w = conv.size()
- #print(conv.size())
- assert h == 1, "the height of conv must be 1"
- conv = conv.squeeze(2) # b *512 * width
- conv = conv.permute(2, 0, 1) # [w, b, c]
- output = F.log_softmax(self.rnn(conv), dim=2)
-
- return output
-
- def weights_init(m):
- classname = m.__class__.__name__
- if classname.find('Conv') != -1:
- m.weight.data.normal_(0.0, 0.02)
- elif classname.find('BatchNorm') != -1:
- m.weight.data.normal_(1.0, 0.02)
- m.bias.data.fill_(0)
-
- def load_model_weights(model,weight):
-
- checkpoint = torch.load(weight)
- if 'state_dict' in checkpoint.keys():
- model.load_state_dict(checkpoint['state_dict'])
- else:
- try:
- model.load_state_dict(checkpoint)
- except:
- ##修正模型参数的名字
- state_dict = torch.load(weight)
- # create new OrderedDict that does not contain `module.`
- from collections import OrderedDict
- new_state_dict = OrderedDict()
- for k, v in state_dict.items():
- name = k[7:] # remove `module.`
- new_state_dict[name] = v
- # load params
- model.load_state_dict(new_state_dict)
-
- def get_crnn(config,weights=None):
-
- model = CRNN(config.MODEL.IMAGE_SIZE.H, 1, config.MODEL.NUM_CLASSES + 1, config.MODEL.NUM_HIDDEN)
-
- if weights:
- load_model_weights(model,weights)
- '''
- checkpoint = torch.load(weights)
- if 'state_dict' in checkpoint.keys():
- model.load_state_dict(checkpoint['state_dict'])
- else:
- model.load_state_dict(checkpoint)
- '''
- else:
- model.apply(weights_init)
-
- return model
|