|
- import cv2,os,time,json
- from models.experimental import attempt_load
- from segutils.segmodel import SegModel,get_largest_contours
- from segutils.trtUtils import segtrtEval,yolov5Trtforward,OcrTrtForward
- from segutils.trafficUtils import trafficPostProcessing,colour_code_segmentation,get_label_info,trafficPostProcessingV2,tracfficAccidentMixFunction
-
-
- from utils.torch_utils import select_device
- from utilsK.queRiver import get_labelnames,get_label_arrays,post_process_,img_pad,draw_painting_joint,detectDraw,getDetections,getDetectionsFromPreds
- from trackUtils.sort import moving_average_wang
-
- from utils.datasets import letterbox
- import numpy as np
- import torch
- import math
- from PIL import Image
- import torch.nn.functional as F
- from copy import deepcopy
- from scipy import interpolate
-
- def xywh2xyxy(box,iW=None,iH=None):
- xc,yc,w,h = box[0:4]
- x0 =max(0, xc-w/2.0)
- x1 =min(1, xc+w/2.0)
- y0=max(0, yc-h/2.0)
- y1=min(1,yc+h/2.0)
- if iW: x0,x1 = x0*iW,x1*iW
- if iH: y0,y1 = y0*iH,y1*iH
- return [x0,y0,x1,y1]
-
-
- def get_ms(t2,t1):
- return (t2-t1)*1000.0
- def get_postProcess_para(parfile):
- with open(parfile) as fp:
- par = json.load(fp)
- assert 'post_process' in par.keys(), ' parfile has not key word:post_process'
- parPost=par['post_process']
-
- return parPost["conf_thres"],parPost["iou_thres"],parPost["classes"],parPost["rainbows"]
- def get_postProcess_para_dic(parfile):
- with open(parfile) as fp:
- par = json.load(fp)
- parPost=par['post_process']
- return parPost
- def AI_process(im0s,model,segmodel,names,label_arraylist,rainbows,objectPar={ 'half':True,'device':'cuda:0' ,'conf_thres':0.25,'iou_thres':0.45,'allowedList':[0,1,2,3],'segRegionCnt':1, 'trtFlag_det':False,'trtFlag_seg':False }, font={ 'line_thickness':None, 'fontSize':None,'boxLine_thickness':None,'waterLineColor':(0,255,255),'waterLineWidth':3} ,segPar={'modelSize':(640,360),'mean':(0.485, 0.456, 0.406),'std' :(0.229, 0.224, 0.225),'numpy':False, 'RGB_convert_first':True},mode='others',postPar=None):
-
- #输入参数
- # im0s---原始图像列表
- # model---检测模型,segmodel---分割模型(如若没有用到,则为None)
- #
- #输出:两个元素(列表,字符)构成的元组,[im0s[0],im0,det_xywh,iframe],strout
- # [im0s[0],im0,det_xywh,iframe]中,
- # im0s[0]--原始图像,im0--AI处理后的图像,iframe--帧号/暂时不需用到。
- # det_xywh--检测结果,是一个列表。
- # 其中每一个元素表示一个目标构成如:[ xc,yc,w,h, float(conf_c),float(cls_c) ] ,2023.08.03修改输出格式
- # #cls_c--类别,如0,1,2,3; xc,yc,w,h--中心点坐标及宽;conf_c--得分, 取值范围在0-1之间
- # #strout---统计AI处理个环节的时间
- # Letterbox
-
- half,device,conf_thres,iou_thres,allowedList = objectPar['half'],objectPar['device'],objectPar['conf_thres'],objectPar['iou_thres'],objectPar['allowedList']
- trtFlag_det,trtFlag_seg,segRegionCnt = objectPar['trtFlag_det'],objectPar['trtFlag_seg'],objectPar['segRegionCnt']
- if 'ovlap_thres_crossCategory' in objectPar.keys():
- ovlap_thres = objectPar['ovlap_thres_crossCategory']
- else:
- ovlap_thres = None
-
- time0=time.time()
- if trtFlag_det:
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
- else:
- img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s];padInfos=None
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- img /= 255.0
- time01=time.time()
-
- if segmodel:
- if trtFlag_seg:
- seg_pred,segstr = segtrtEval(segmodel,im0s[0],par=segPar)
- else:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- segFlag=True
- else:
- seg_pred = None;segFlag=False;segstr='Not implemented'
- #if mode=='highWay3.0':
- # seg_pred_mulcls = seg_pred.copy()
- # #seg_pred = (seg_pred==1).astype(np.uint8) ###把路提取出来,路的类别是1
-
- time1=time.time()
- if trtFlag_det:
- pred = yolov5Trtforward(model,img)
- else:
- pred = model(img,augment=False)[0]
-
- time2=time.time()
-
-
- #p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,ObjectPar=ObjectPar,font=font,padInfos=padInfos,ovlap_thres=ovlap_thres)
-
- p_result, timeOut = getDetectionsFromPreds(pred,img,im0s[0],conf_thres=conf_thres,iou_thres=iou_thres,ovlap_thres=ovlap_thres,padInfos=padInfos)
-
- #if mode=='highWay3.0':
- #if segmodel:
- if segPar['mixFunction']['function']:
- #assert postPar , ' postPar not implemented'
- #det_coords_original = tracfficAccidentMixFunction(p_result[2],seg_pred_mulcls,segPar['mixFunction']['pars'])
- #p_result[2] = det_coords_original
- mixFunction = segPar['mixFunction']['function'];H,W = im0s[0].shape[0:2]
- parMix = segPar['mixFunction']['pars'];#print('###line117:',parMix,p_result[2])
- parMix['imgSize'] = (W,H)
- #print('##before:',p_result[2])
- p_result[2] , timeMixPost= mixFunction(p_result[2], seg_pred, pars=parMix )
- #print('##after:',p_result[2])
- p_result.append(seg_pred)
-
- else:
- timeMixPost=':0 ms'
- #print('#### line121: segstr:%s timeMixPost:%s timeOut:%s'%( segstr.strip(), timeMixPost,timeOut ))
- time_info = 'letterbox:%.1f, seg:%.1f , infer:%.1f,%s, seginfo:%s ,timeMixPost:%s '%( (time01-time0)*1000, (time1-time01)*1000 ,(time2-time1)*1000,timeOut , segstr.strip(),timeMixPost )
- #if mode=='highWay3.0':
-
-
- return p_result,time_info
-
- def AI_Seg_process(im0s,segmodel,digitWordFont,trtFlag_seg=True,segPar={'modelSize':(640,360),'mean':(0.485, 0.456, 0.406),'std' :(0.229, 0.224, 0.225),'numpy':False, 'RGB_convert_first':True},postPar= {'label_csv': './AIlib2/weights/conf/trafficAccident/class_dict.csv', 'speedRoadArea': 5100, 'vehicleArea': 100, 'speedRoadVehicleAngleMin': 15, 'speedRoadVehicleAngleMax': 75, 'vehicleLengthWidthThreshold': 4, 'vehicleSafeDistance': 7}):
- '''
- 输入参数
- im0s---原始图像列表
- segmodel---分割模型,segmodel---分割模型(如若没有用到,则为None)
- digitWordFont--显示字体,数字等参数
- trtFlag_seg--模型是否是TRT格式
- segPar--分割模型的参数
- postPar--后处理参数
- 输出
- seg_pred--返回语义分割的结果图(0,1,2...表示)
- img_draw--原图上带有矩形框的图
- segstr-----文本数据包括时间信息
- list1-----返回目标的坐标结果,每一个目标用[ cls, x0,y0,x1,y1,conf ]
- '''
- time1=time.time()
- H,W=im0s[0].shape[0:2]
- img_draw=im0s[0].copy()
- if trtFlag_seg:
- seg_pred,segstr = segtrtEval(segmodel,im0s[0],par=segPar)
- else:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- time2 = time.time()
- label_info = get_label_info(postPar['label_csv'])
- postPar['CCS']=colour_code_segmentation(seg_pred.copy(), label_info)
- postPar['sourceImageSize'] = im0s[0].shape[0:2]
- postPar['seg_pred_size'] = seg_pred.shape[0:2]
-
- list1,post_time_infos = trafficPostProcessing(postPar)
- list2=[]
- cls=0
- label_arraylist=digitWordFont['label_arraylist']
- rainbows=digitWordFont['rainbows']
- for bpoints in list1:
- #print('###line104:',bpoints)
- bpoints=np.array(bpoints)
- x0=np.min( bpoints[:,0] )
- y0=np.min( bpoints[:,1] )
- x1=np.max( bpoints[:,0] )
- y1=np.max( bpoints[:,1] )
- conf= ((x0+x1)/W + (y0+y1)/H)/4.0;
- conf=1.0 - math.fabs((conf-0.5)/0.5)
- xyxy=[x0,y0,x1,y1]
- xyxy=[int(x+0.5) for x in xyxy]
- #float(cls_c), *xywh, float(conf_c)]
- list2.append( [ cls, x0,y0,x1,y1,conf ] )
- img_draw = draw_painting_joint(xyxy,img_draw,label_arraylist[int(cls)],score=conf,color=rainbows[int(cls)%20],font=digitWordFont)
-
-
- segstr = 'segInfer:%.2f %s '%( (time2-time1)*1000.0,post_time_infos )
-
- return seg_pred,img_draw,segstr,list2
- def AI_process_v2(im0s,model,segmodel,names,label_arraylist,rainbows,half=True,device=' cuda:0',conf_thres=0.25, iou_thres=0.45,allowedList=[0,1,2,3], font={ 'line_thickness':None, 'fontSize':None,'boxLine_thickness':None,'waterLineColor':(0,255,255),'waterLineWidth':3} ):
- #输入参数
- # im0s---原始图像列表
- # model---检测模型,segmodel---分割模型(如若没有用到,则为None)
- #输出:两个元素(列表,字符)构成的元组,[im0s[0],im0,det_xywh,iframe],strout
- # [im0s[0],im0,det_xywh,iframe]中,
- # im0s[0]--原始图像,im0--AI处理后的图像,iframe--帧号/暂时不需用到。
- # det_xywh--检测结果,是一个列表。
- # 其中每一个元素表示一个目标构成如:[float(cls_c), xc,yc,w,h, float(conf_c)]
- # #cls_c--类别,如0,1,2,3; xc,yc,w,h--中心点坐标及宽;conf_c--得分, 取值范围在0-1之间
- # #strout---统计AI处理个环节的时间
-
-
-
- # Letterbox
- time0=time.time()
- #img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s]
-
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
-
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- time01=time.time()
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if segmodel:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- segFlag=True
- else:
- seg_pred = None;segFlag=False
- time1=time.time()
- pred = model(img,augment=False)
- time2=time.time()
- datas = [[''], img, im0s, None,pred,seg_pred,10]
-
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,object_config=allowedList,segmodel=segFlag,font=font,padInfos=padInfos)
- time_info = 'letterbox:%.1f, seg:%.1f , infer:%.1f,%s, seginfo:%s'%( (time01-time0)*1000, (time1-time01)*1000 ,(time2-time1)*1000,timeOut , segstr )
- return p_result,time_info
-
-
- def AI_process_forest(im0s,model,segmodel,names,label_arraylist,rainbows,half=True,device=' cuda:0',conf_thres=0.25, iou_thres=0.45,allowedList=[0,1,2,3], font={ 'line_thickness':None, 'fontSize':None,'boxLine_thickness':None,'waterLineColor':(0,255,255),'waterLineWidth':3} ,trtFlag_det=False,SecNms=None):
- #输入参数
- # im0s---原始图像列表
- # model---检测模型,segmodel---分割模型(如若没有用到,则为None)
- #输出:两个元素(列表,字符)构成的元组,[im0s[0],im0,det_xywh,iframe],strout
- # [im0s[0],im0,det_xywh,iframe]中,
- # im0s[0]--原始图像,im0--AI处理后的图像,iframe--帧号/暂时不需用到。
- # det_xywh--检测结果,是一个列表。
- # 其中每一个元素表示一个目标构成如:[ xc,yc,w,h, float(conf_c),float(cls_c)],#2023.08.03,修改输出格式
- # #cls_c--类别,如0,1,2,3; xc,yc,w,h--中心点坐标及宽;conf_c--得分, 取值范围在0-1之间
- # #strout---统计AI处理个环节的时间
-
- # Letterbox
- time0=time.time()
- if trtFlag_det:
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
- else:
- img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s];padInfos=None
- #img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s]
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
-
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if segmodel:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- segFlag=True
- else:
- seg_pred = None;segFlag=False
- time1=time.time()
- pred = yolov5Trtforward(model,img) if trtFlag_det else model(img,augment=False)[0]
-
-
- time2=time.time()
- datas = [[''], img, im0s, None,pred,seg_pred,10]
-
- ObjectPar={ 'object_config':allowedList, 'slopeIndex':[] ,'segmodel':segFlag,'segRegionCnt':0 }
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,ObjectPar=ObjectPar,font=font,padInfos=padInfos,ovlap_thres=SecNms)
- #print('###line274:',p_result[2])
- #p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,object_config=allowedList,segmodel=segFlag,font=font,padInfos=padInfos)
- time_info = 'letterbox:%.1f, infer:%.1f, '%( (time1-time0)*1000,(time2-time1)*1000 )
- return p_result,time_info+timeOut
-
-
- def AI_det_track( im0s_in,modelPar,processPar,sort_tracker,segPar=None):
- im0s,iframe=im0s_in[0],im0s_in[1]
- model = modelPar['det_Model']
- segmodel = modelPar['seg_Model']
- half,device,conf_thres, iou_thres,trtFlag_det = processPar['half'], processPar['device'], processPar['conf_thres'], processPar['iou_thres'],processPar['trtFlag_det']
- iou2nd = processPar['iou2nd']
- time0=time.time()
-
- if trtFlag_det:
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
- else:
- img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s];padInfos=None
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
-
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
-
- seg_pred = None;segFlag=False
- time1=time.time()
- pred = yolov5Trtforward(model,img) if trtFlag_det else model(img,augment=False)[0]
-
- time2=time.time()
-
- #p_result,timeOut = getDetections(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,ObjectPar=ObjectPar,font=font,padInfos=padInfos)
- p_result, timeOut = getDetectionsFromPreds(pred,img,im0s[0],conf_thres=conf_thres,iou_thres=iou_thres,ovlap_thres=iou2nd,padInfos=padInfos)
-
- if segmodel:
- timeS1=time.time()
- seg_pred,segstr = segtrtEval(segmodel,im0s[0],par=segPar) if segPar['trtFlag_seg'] else segmodel.eval(im0s[0] )
- timeS2=time.time()
- mixFunction = segPar['mixFunction']['function']
- #print('##line316: before ', p_result[2])
- p_result[2],timeInfos_post = mixFunction(p_result[2], seg_pred, pars=segPar['mixFunction']['pars'] )
- #print('##line318: after ', p_result[2])
- timeInfos_seg_post = 'segInfer:%.1f ,postProcess:%s'%( (timeS2-timeS1)*1000, timeInfos_post )
-
- else:
- timeInfos_seg_post = ' '
- #print('######line341:',seg_pred.shape,np.max(seg_pred),np.min(seg_pred) , len(p_result[2]) )
- time_info = 'letterbox:%.1f, detinfer:%.1f, '%( (time1-time0)*1000,(time2-time1)*1000 )
- if sort_tracker:
- #在这里增加设置调用追踪器的频率
- #..................USE TRACK FUNCTION....................
- #pass an empty array to sort
- dets_to_sort = np.empty((0,7), dtype=np.float32)
-
- # NOTE: We send in detected object class too
- #for detclass,x1,y1,x2,y2,conf in p_result[2]:
- for x1,y1,x2,y2,conf, detclass in p_result[2]:
- #print('#######line342:',x1,y1,x2,y2,img.shape,[x1, y1, x2, y2, conf, detclass,iframe])
- dets_to_sort = np.vstack((dets_to_sort,
- np.array([x1, y1, x2, y2, conf, detclass,iframe],dtype=np.float32) ))
-
- # Run SORT
- tracked_dets = deepcopy(sort_tracker.update(dets_to_sort) )
- tracks =sort_tracker.getTrackers()
- p_result.append(tracked_dets) ###index=4
- p_result.append(tracks) ###index=5
-
- return p_result,time_info+timeOut+timeInfos_seg_post
- def AI_det_track_batch(imgarray_list, iframe_list ,modelPar,processPar,sort_tracker,trackPar,segPar=None):
- '''
- 输入:
- imgarray_list--图像列表
- iframe_list -- 帧号列表
- modelPar--模型参数,字典,modelPar={'det_Model':,'seg_Model':}
- processPar--字典,存放检测相关参数,'half', 'device', 'conf_thres', 'iou_thres','trtFlag_det'
- sort_tracker--对象,初始化的跟踪对象。为了保持一致,即使是单帧也要有。
- trackPar--跟踪参数,关键字包括:det_cnt,windowsize
- segPar--None,分割模型相关参数。如果用不到,则为None
- 输入:retResults,timeInfos
- retResults:list
- retResults[0]--imgarray_list
- retResults[1]--所有结果用numpy格式,所有的检测结果,包括8类,每列分别是x1, y1, x2, y2, conf, detclass,iframe,trackId
- retResults[2]--所有结果用list表示,其中每一个元素为一个list,表示每一帧的检测结果,每一个结果是由多个list构成,每个list表示一个框,格式为[ x0 ,y0 ,x1 ,y1 ,conf, cls ,ifrmae,trackId ],如 retResults[2][j][k]表示第j帧的第k个框。2023.08.03,修改输出格式
- '''
-
- det_cnt,windowsize = trackPar['det_cnt'] ,trackPar['windowsize']
- trackers_dic={}
- index_list = list(range( 0, len(iframe_list) ,det_cnt ));
- if len(index_list)>1 and index_list[-1]!= iframe_list[-1]:
- index_list.append( len(iframe_list) - 1 )
-
- if len(imgarray_list)==1: #如果是单帧图片,则不用跟踪
- retResults = []
- p_result,timeOut = AI_det_track( [ [imgarray_list[0]] ,iframe_list[0] ],modelPar,processPar,None,segPar )
- ##下面4行内容只是为了保持格式一致
- detArray = np.array(p_result[2])
- #print('##line371:',detArray)
- if len(p_result[2])==0:res=[]
- else:
- cnt = detArray.shape[0];trackIds=np.zeros((cnt,1));iframes = np.zeros((cnt,1)) + iframe_list[0]
-
- #detArray = np.hstack( (detArray[:,1:5], detArray[:,5:6] ,detArray[:,0:1],iframes, trackIds ) )
- detArray = np.hstack( (detArray[:,0:4], detArray[:,4:6] ,iframes, trackIds ) ) ##2023.08.03 修改输入格式
- res = [[ b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7] ] for b in detArray ]
- retResults=[imgarray_list,detArray,res ]
- #print('##line380:',retResults[2])
- return retResults,timeOut
-
- else:
- t0 = time.time()
- timeInfos_track=''
- for iframe_index, index_frame in enumerate(index_list):
- p_result,timeOut = AI_det_track( [ [imgarray_list[index_frame]] ,iframe_list[index_frame] ],modelPar,processPar,sort_tracker,segPar )
- timeInfos_track='%s:%s'%(timeInfos_track,timeOut)
-
- for tracker in p_result[5]:
- trackers_dic[tracker.id]=deepcopy(tracker)
- t1 = time.time()
-
- track_det_result = np.empty((0,8))
- for trackId in trackers_dic.keys():
- tracker = trackers_dic[trackId]
- bbox_history = np.array(tracker.bbox_history)
- if len(bbox_history)<2: continue
- ###把(x0,y0,x1,y1)转换成(xc,yc,w,h)
- xcs_ycs = (bbox_history[:,0:2] + bbox_history[:,2:4] )/2
- whs = bbox_history[:,2:4] - bbox_history[:,0:2]
- bbox_history[:,0:2] = xcs_ycs;bbox_history[:,2:4] = whs;
-
- arrays_box = bbox_history[:,0:7].transpose();frames=bbox_history[:,6]
- #frame_min--表示该批次图片的起始帧,如该批次是[1,100],则frame_min=1,[101,200]--frame_min=101
- #frames[0]--表示该目标出现的起始帧,如[1,11,21,31,41],则frames[0]=1,frames[0]可能会在frame_min之前出现,即一个横跨了多个批次。
-
- ##如果要最好化插值范围,则取内区间[frame_min,则frame_max ]和[frames[0],frames[-1] ]的交集
- #inter_frame_min = int(max(frame_min, frames[0])); inter_frame_max = int(min( frame_max, frames[-1] )) ##
-
- ##如果要求得到完整的目标轨迹,则插值区间要以目标出现的起始点为准
- inter_frame_min=int(frames[0]);inter_frame_max=int(frames[-1])
- new_frames= np.linspace(inter_frame_min,inter_frame_max,inter_frame_max-inter_frame_min+1 )
- f_linear = interpolate.interp1d(frames,arrays_box); interpolation_x0s = (f_linear(new_frames)).transpose()
- move_cnt_use =(len(interpolation_x0s)+1)//2*2-1 if len(interpolation_x0s)<windowsize else windowsize
- for im in range(4):
- interpolation_x0s[:,im] = moving_average_wang(interpolation_x0s[:,im],move_cnt_use )
-
- cnt = inter_frame_max-inter_frame_min+1; trackIds = np.zeros((cnt,1)) + trackId
- interpolation_x0s = np.hstack( (interpolation_x0s, trackIds ) )
- track_det_result = np.vstack(( track_det_result, interpolation_x0s) )
- #print('#####line116:',trackId,frame_min,frame_max,'----------',interpolation_x0s.shape,track_det_result.shape ,'-----')
-
- ##将[xc,yc,w,h]转为[x0,y0,x1,y1]
- x0s = track_det_result[:,0] - track_det_result[:,2]/2 ; x1s = track_det_result[:,0] + track_det_result[:,2]/2
- y0s = track_det_result[:,1] - track_det_result[:,3]/2 ; y1s = track_det_result[:,1] + track_det_result[:,3]/2
- track_det_result[:,0] = x0s; track_det_result[:,1] = y0s;
- track_det_result[:,2] = x1s; track_det_result[:,3] = y1s;
- detResults=[]
- for iiframe in iframe_list:
- boxes_oneFrame = track_det_result[ track_det_result[:,6]==iiframe ]
- res = [[ b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7] ] for b in boxes_oneFrame ]
- #[ x0 ,y0 ,x1 ,y1 ,conf,cls,ifrmae,trackId ]
- #[ifrmae, x0 ,y0 ,x1 ,y1 ,conf,cls,trackId ]
- detResults.append( res )
-
-
- retResults=[imgarray_list,track_det_result,detResults ]
- t2 = time.time()
- timeInfos = 'detTrack:%.1f TrackPost:%.1f, %s'%(get_ms(t1,t0),get_ms(t2,t1), timeInfos_track )
- return retResults,timeInfos
-
-
- def ocr_process(pars):
-
- img_patch,engine,context,converter,AlignCollate_normal,device=pars[0:6]
- time1 = time.time()
- img_tensor = AlignCollate_normal([ Image.fromarray(img_patch,'L') ])
- img_input = img_tensor.to('cuda:0')
- time2 = time.time()
-
- preds,trtstr=OcrTrtForward(engine,[img_input],context)
- time3 = time.time()
-
- batch_size = preds.size(0)
- preds_size = torch.IntTensor([preds.size(1)] * batch_size)
-
- ######## filter ignore_char, rebalance
- preds_prob = F.softmax(preds, dim=2)
- preds_prob = preds_prob.cpu().detach().numpy()
- pred_norm = preds_prob.sum(axis=2)
- preds_prob = preds_prob/np.expand_dims(pred_norm, axis=-1)
- preds_prob = torch.from_numpy(preds_prob).float().to(device)
- _, preds_index = preds_prob.max(2)
- preds_index = preds_index.view(-1)
- time4 = time.time()
- preds_str = converter.decode_greedy(preds_index.data.cpu().detach().numpy(), preds_size.data)
- time5 = time.time()
-
- info_str= ('pre-process:%.2f TRTforward:%.2f (%s) postProcess:%2.f decoder:%.2f, Total:%.2f , pred:%s'%(get_ms(time2,time1 ),get_ms(time3,time2 ),trtstr, get_ms(time4,time3 ), get_ms(time5,time4 ), get_ms(time5,time1 ), preds_str ) )
- return preds_str,info_str
- def main():
- ##预先设置的参数
- device_='1' ##选定模型,可选 cpu,'0','1'
-
- ##以下参数目前不可改
- Detweights = "weights/yolov5/class5/best_5classes.pt"
- seg_nclass = 2
- Segweights = "weights/BiSeNet/checkpoint.pth"
- conf_thres,iou_thres,classes= 0.25,0.45,5
- labelnames = "weights/yolov5/class5/labelnames.json"
- rainbows = [ [0,0,255],[0,255,0],[255,0,0],[255,0,255],[255,255,0],[255,129,0],[255,0,127],[127,255,0],[0,255,127],[0,127,255],[127,0,255],[255,127,255],[255,255,127],[127,255,255],[0,255,255],[255,127,255],[127,255,255], [0,127,0],[0,0,127],[0,255,255]]
- allowedList=[0,1,2,3]
-
-
- ##加载模型,准备好显示字符
- device = select_device(device_)
- names=get_labelnames(labelnames)
- label_arraylist = get_label_arrays(names,rainbows,outfontsize=40,fontpath="conf/platech.ttf")
- half = device.type != 'cpu' # half precision only supported on CUDA
- model = attempt_load(Detweights, map_location=device) # load FP32 model
- if half: model.half()
- segmodel = SegModel(nclass=seg_nclass,weights=Segweights,device=device)
-
-
- ##图像测试
- #url='images/examples/20220624_响水河_12300_1621.jpg'
- impth = 'images/examples/'
- outpth = 'images/results/'
- folders = os.listdir(impth)
- for i in range(len(folders)):
- imgpath = os.path.join(impth, folders[i])
- im0s=[cv2.imread(imgpath)]
- time00 = time.time()
- p_result,timeOut = AI_process(im0s,model,segmodel,names,label_arraylist,rainbows,half,device,conf_thres, iou_thres,allowedList,fontSize=1.0)
- time11 = time.time()
- image_array = p_result[1]
- cv2.imwrite( os.path.join( outpth,folders[i] ) ,image_array )
- #print('----process:%s'%(folders[i]), (time.time() - time11) * 1000)
-
-
-
-
-
- if __name__=="__main__":
- main()
|