|
- import torch.nn as nn
- from .modules import VGG_FeatureExtractor, BidirectionalLSTM
-
- class Model(nn.Module):
-
- def __init__(self, input_channel, output_channel, hidden_size, num_class,input_height=64):
- super(Model, self).__init__()
- """ FeatureExtraction """
- self.FeatureExtraction = VGG_FeatureExtractor(input_channel, output_channel)
- self.FeatureExtraction_output = output_channel
-
- if input_height==64:
- self.AdaptiveAvgPool = nn.AvgPool2d(kernel_size=(1, 3), stride=(1,1))
- elif input_height==32:
- self.AdaptiveAvgPool = nn.AvgPool2d(kernel_size=(1, 1), stride=(1,1))
- else:
- self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1))
-
- """ Sequence modeling"""
- self.SequenceModeling = nn.Sequential(
- BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size),
- BidirectionalLSTM(hidden_size, hidden_size, hidden_size))
- self.SequenceModeling_output = hidden_size
-
- """ Prediction """
- self.Prediction = nn.Linear(self.SequenceModeling_output, num_class)
-
-
- def forward(self, input, text):
- """ Feature extraction stage """
- #print('####vgg_model.py line27:',input.size(), 'input[0,0,0:2,0:2] :',input[0,0,0:2,0:2])
- visual_feature = self.FeatureExtraction(input)
- #print('###line26:',visual_feature.size() )
- visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2))
- #print('###line29:',visual_feature.size())
- visual_feature = visual_feature.squeeze(3)
-
- """ Sequence modeling stage """
- contextual_feature = self.SequenceModeling(visual_feature)
-
- """ Prediction stage """
- prediction = self.Prediction(contextual_feature.contiguous())
- #print('###line39 vgg_model:',prediction.size())
- return prediction
|