|
- from DMPRUtils.DMPR_process import DMPR_process
- import tensorrt as trt
- import sys,os
- #from DMPRUtils.model.detector import DirectionalPointDetector
- from DMPRUtils.yolo_net import Model
- import torch
-
- class DMPRModel(object):
- def __init__(self, weights=None,
- par={'depth_factor':32,'NUM_FEATURE_MAP_CHANNEL':6,'dmpr_thresh':0.3, 'dmprimg_size':640}
- ):
-
- self.par = par
- self.device = 'cuda:0'
- self.half =True
-
- if weights.endswith('.engine'):
- self.infer_type ='trt'
- elif weights.endswith('.pth') or weights.endswith('.pt') :
- self.infer_type ='pth'
- else:
- print('#########ERROR:',weights,': no registered inference type, exit')
- sys.exit(0)
-
- if self.infer_type=='trt':
- logger = trt.Logger(trt.Logger.ERROR)
- with open(weights, "rb") as f, trt.Runtime(logger) as runtime:
- self.model=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象
- print('############load seg model trt success: ',weights)
- elif self.infer_type=='pth':
- #self.model = DirectionalPointDetector(3, self.par['depth_factor'], self.par['NUM_FEATURE_MAP_CHANNEL']).to(self.device)
- confUrl = os.path.join( os.path.dirname(__file__),'DMPRUtils','config','yolov5s.yaml' )
- self.model = Model(confUrl, ch=3).to(self.device)
- self.model.load_state_dict(torch.load(weights))
- print('#######load pt model:%s success '%(weights))
- self.par['modelType']=self.infer_type
-
- def eval(self,image):
- det,timeInfos = DMPR_process(image, self.model, self.device, self.par)
- det = det.cpu().detach().numpy()
- return det,timeInfos
-
- def get_ms(self,t1,t0):
- return (t1-t0)*1000.0
-
-
|