|
- # 耗时最短代码
- import numpy as np
- import cv2,time,math
- import matplotlib.pyplot as plt
-
-
- def get_ms(time2, time1):
- return (time2-time1)*1000.0
-
-
- # 计算一点到二次函数曲线的距离,二次函数的表达式为x = a*(y**2) + b*y + c
- def point2QF(a, b, c, y, x): # 坐标点(y, x)
- distance = abs(x - a*(y**2) - b*y - c) / math.sqrt(1 + ((2*a*y + b)**2))
- return distance
-
-
- # 存储所有speedRoad的contours
- def storageRoad(contours, pars):
- allRoadCnt = [] # 存储所有speedRoad的contours
- for cnt in contours: # 道路
- if len(cnt) >= 6:
- rect = cv2.minAreaRect(cnt)
- if rect[1][0] * rect[1][1] > pars['RoadArea']: # 过滤掉面积小于阈值的speedRoad
- allRoadCnt.append(cnt)
- return allRoadCnt
-
-
- # 用于判断lane数量是否大于2,当lane数量大于等于2时,返回laneNumber
- def storageLane(contours, pars):
- laneNumber = 0
- for cnt in contours:
- if len(cnt) >= 6:
- rect = cv2.minAreaRect(cnt)
- if rect[1][0] * rect[1][1] > pars['laneArea'] and min(rect[1]) / max(rect[1]) <= pars['roundness']:
- laneNumber += 1
- if laneNumber > 2:
- break
- return laneNumber
-
-
- # 将contours中顶点数大于等于6的车辆信息(合格vehicle)和顶点数小于6的车辆信息(不合格vehicle)分别保存起来
- def vehicleDivide(contours, vehicleBD, normVehicle, dets, count, i, unnormVehicle, normVehicleCOOR, centerCOOR):
- if len(contours) >= 6:
- vehicleBD.append(contours)
- normVehicle.append(dets[count])
- normVehicleCOOR.append(centerCOOR)
- else:
- dets[int(i / 2)].append(0)
- dets[int(i / 2)].append(0)
- unnormVehicle.append(dets[int(i / 2)])
- return vehicleBD, normVehicle, unnormVehicle, normVehicleCOOR
-
-
- # 存储所有vehicle的信息
- def storageVehicle(pars, imgVehicle, dets):
- """
- 输入
- pars:字典名
- imgVehicle:分割图,只包含vehicle和背景
- dets:是一个list,其中存储检测得到的各vehicle的信息,即[[x0, y0, x1, y1, 车辆得分, cls], ...]
- 输出
- dets:存储合格vehicle的信息,即[x0, y0, x1, y1, 车辆得分, cls]
- vehicleBD:存储合格vehicle的contours
- unnormVehicle:存储不合格vehicle的信息,即[x0, y0, x1, y1, 车辆得分, cls]
- normVehicleCOOR:存储合格vehicle的中心点坐标
- 说明
- 合格vehicle:contours中的顶点数大于等于6
- 不合格vehicle:contours中的顶点数小于6
- """
- vehicleBD = [] # 存储一副图像中vehicles的contours
- normVehicle = [] # 将合格vehicle的信息存储在normVehicle中
- unnormVehicle = [] # 将不合格vehicle的信息存储在unnormVehicle中
- normVehicleCOOR = [] # 存储合格vehicle的中心点坐标
- img = cv2.cvtColor(imgVehicle, cv2.COLOR_BGR2GRAY)
- count = 0
- for i in range(0, len(pars['vehicleCOOR']), 2):
- y1 = int(pars['vehicleCOOR'][i][1] * pars['ZoomFactor']['y'])
- y2 = int(pars['vehicleCOOR'][i + 1][1] * pars['ZoomFactor']['y'])
- x1 = int(pars['vehicleCOOR'][i][0] * pars['ZoomFactor']['x'])
- x2 = int(pars['vehicleCOOR'][i + 1][0] * pars['ZoomFactor']['x'])
- if y1 >= 2:
- y1 = y1 - 2
- if y2 <= (pars['modelSize'][1] - 2):
- y2 = y2 + 2
- if x1 >= 2:
- x1 = x1 - 2
- if x2 <= (pars['modelSize'][0] - 2):
- x2 = x2 + 2
- centerCOOR = (int((x1 + x2) / 2), int((y1 + y2) / 2))
- img1 = img[y1:y2, x1:x2]
- up = np.zeros((20, (x2 - x1)), dtype='uint8')
- left = np.zeros(((40 + y2 - y1), 20), dtype='uint8')
- img1 = np.concatenate((up, img1), axis=0)
- img1 = np.concatenate((img1, up), axis=0)
- img1 = np.concatenate((left, img1), axis=1)
- img2 = np.concatenate((img1, left), axis=1)
- contours2, hierarchy = cv2.findContours(img2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
- if len(contours2) != 0:
- if len(contours2) > 1:
- vehicleArea = [] # 存储vehicle的最小外接矩形的面积
- for j in range(len(contours2)):
- rect = cv2.minAreaRect(contours2[j])
- vehicleArea.append(rect[1][0] * rect[1][1])
- maxAreaIndex = vehicleArea.index(max(vehicleArea))
- maxAreaContours = contours2[maxAreaIndex]
- vehicleBD, normVehicle, unnormVehicle, normVehicleCOOR = vehicleDivide(maxAreaContours, vehicleBD, normVehicle, dets, count, i, unnormVehicle, normVehicleCOOR, centerCOOR)
- elif len(contours2) == 1:
- vehicleBD, normVehicle, unnormVehicle, normVehicleCOOR = vehicleDivide(contours2[0], vehicleBD, normVehicle, dets, count, i, unnormVehicle, normVehicleCOOR, centerCOOR)
- else:
- dets[int(i / 2)].append(0)
- dets[int(i / 2)].append(0)
- unnormVehicle.append(dets[int(i / 2)])
- count += 1
- dets = normVehicle
- return dets, vehicleBD, unnormVehicle, normVehicleCOOR
-
-
- # 计算违停得分
- def IllegalParkScore(vehicleBD, allRoadCnt, dets, laneNumber, unnormVehicle, normVehicleCOOR, a_l, b_l, c_l, a_r, b_r, c_r):
- """
- 对vehicle是否在speedRoad上进行判断,并计算违章得分
- 输出targetList 其格式为:[[cls, x0, y0, x1, y1, score, 违章得分, 违章类别], ...]
- """
- if len(vehicleBD) != 0:
- for i in range(len(vehicleBD)):
- rect = cv2.minAreaRect(vehicleBD[i])
- center = normVehicleCOOR[i] # vehicle的中心点坐标
- if len(allRoadCnt) != 0 and laneNumber >= 2: # 当车道线个数至少有两条时,才计算违章得分
- for j in range(len(allRoadCnt)):
- # 判断车辆矩形框的中心点坐标是否在道路矩形框的范围内
- flag = cv2.pointPolygonTest(allRoadCnt[j], center, False)
- if flag >= 0:
- dets[i].append(0) # 给违章得分占位
- dets[i].append(0) # 给违章类别占位
- if center[0] < predict(a_l, b_l, c_l, center[1]):
- distance = point2QF(a_l, b_l, c_l, center[1], center[0])
- if distance >= min(rect[1]) / 2:
- dets[i][6], dets[i][7] = 1, 1
- else:
- dets[i][6], dets[i][7] = distance / (min(rect[1]) / 2), 1
- elif center[0] > predict(a_r, b_r, c_r, center[1]):
- distance = point2QF(a_r, b_r, c_r, center[1], center[0])
- if distance >= min(rect[1]) / 2:
- dets[i][6], dets[i][7] = 1, 1
- else:
- dets[i][6], dets[i][7] = distance / (min(rect[1]) / 2), 1
- else:
- dets[i][6], dets[i][7] = 0, 0
- break
- # 如果分割图像中不存在speedRoad,则无法进行违章判定,将所有车辆的违章类别设为0,即没有违章
- if len(dets[i]) < 8:
- dets[i].append(0) # 违章得分为0
- dets[i].append(0) # 0表示没有违章
- targetList = dets
- if len(unnormVehicle) != 0:
- for i in range(len(unnormVehicle)):
- targetList.append(unnormVehicle[i]) # 将所有车辆的信息合并到一起
- else:
- targetList = unnormVehicle
- return targetList
-
-
- # 找最左侧lane时,将要删除的右侧lane的序号存储在delRightLane。找最右侧lane时,将要删除的左侧lane的序号存储在delLeftLane。
- def devideLane(laneInfo, i, m, delRightLane, delLeftLane, y):
- index1 = np.where(laneInfo[i][3] == y)
- index1 = index1[0].tolist()
- index1.sort()
- x_1 = laneInfo[i][5][index1[0]][0]
- index2 = np.where(laneInfo[m][3] == y)
- index2 = index2[0].tolist()
- index2.sort()
- x_2 = laneInfo[m][5][index2[0]][0]
- if x_1 < x_2:
- if i not in delLeftLane:
- delLeftLane.append(i) # 保留右侧lane
- if m not in delRightLane:
- delRightLane.append(m)
- else:
- if m not in delLeftLane:
- delLeftLane.append(m)
- if i not in delRightLane:
- delRightLane.append(i)
-
- return delRightLane, delLeftLane
-
-
- # 确定最左侧和最右侧的lane簇
- def detLine(contours):
- """
- 输入
- contours:各lane的contours
- 输出
- laneInfo:存储各lane的信息,每条lane的信息为:[contours, y坐标范围, lane序号, arr_y, y坐标范围的长度, cnt]
- delRightLane:在确定最左侧lane时,其存储需要删除的lane的序号
- delLeftLane:在确定最右侧lane时,其存储需要删除的lane的序号
- """
- mergList = []
- for i in range(len(contours)):
- cnt = np.squeeze(contours[i], 1)
- arr_y = cnt[:, 1]
- arrList = list(set(arr_y))
- cnt_y = np.sort(np.array(arrList))
- mergList.append([contours[i], cnt_y, i, arr_y, len(cnt_y), cnt])
- laneInfo = sorted(mergList, key=(lambda x: x[4])) # [[contours[i], cnt_y, i, arr_y, len(cnt_y)],...]
- delRightLane = [] # 求最左侧lane
- delLeftLane = [] # 求最右侧lane
- laneInfoNew = []
- for i in range(len(laneInfo)):
- laneInfoNew.append([laneInfo[i][1][0], laneInfo[i][1][-1], i]) # [[y_min, y_max, i],...]
- laneInfoNew = np.array(laneInfoNew)
- new1 = laneInfoNew[:, np.newaxis, :].repeat(laneInfoNew.shape[0], 1)
- new2 = laneInfoNew[np.newaxis, ...].repeat(laneInfoNew.shape[0], 0)
- new3 = np.concatenate((new1, new2), axis=2)
- y_i_min, y_i_max, y_m_min, y_m_max = new3[..., 0], new3[..., 1], new3[..., 3], new3[..., 4]
- mask1 = (y_i_min >= y_m_min) & (y_i_min <= y_m_max) & (y_i_max > y_m_max)
- mask2 = (y_i_max >= y_m_min) & (y_i_max <= y_m_max) & (y_i_min < y_m_min)
- mask3 = (y_i_min >= y_m_min) & (y_i_max <= y_m_max)
- mask4 = (y_i_min < y_m_min) & (y_i_max > y_m_max)
- if len(np.nonzero(mask1)[0]) != 0:
- mask1 = np.triu(mask1, k=1)
- serial_i = new3[mask1][..., 2]
- serial_m = new3[mask1][..., 5]
- for k in range(len(serial_i)):
- if (serial_m[k] not in delLeftLane) or (serial_m[k] not in delRightLane) or (serial_i[k] not in delLeftLane) or (serial_i[k] not in delRightLane):
- delRightLane, delLeftLane = devideLane(laneInfo, serial_i[k], serial_m[k], delRightLane, delLeftLane, laneInfo[serial_i[k]][1][0])
-
- if len(np.nonzero(mask2)[0]) != 0:
- mask2 = np.triu(mask2, k=1)
- serial_i = new3[mask2][..., 2]
- serial_m = new3[mask2][..., 5]
- for k in range(len(serial_i)):
- if (serial_m[k] not in delLeftLane) or (serial_m[k] not in delRightLane) or (serial_i[k] not in delLeftLane) or (serial_i[k] not in delRightLane):
- delRightLane, delLeftLane = devideLane(laneInfo, serial_i[k], serial_m[k], delRightLane, delLeftLane, laneInfo[serial_i[k]][1][-1])
-
- if len(np.nonzero(mask3)[0]) != 0:
- mask3 = np.triu(mask3, k=1)
- serial_i = new3[mask3][..., 2]
- serial_m = new3[mask3][..., 5]
- for k in range(len(serial_i)):
- if (serial_m[k] not in delLeftLane) or (serial_m[k] not in delRightLane) or (serial_i[k] not in delLeftLane) or (serial_i[k] not in delRightLane):
- delRightLane, delLeftLane = devideLane(laneInfo, serial_i[k], serial_m[k], delRightLane, delLeftLane, laneInfo[serial_i[k]][1][0])
-
- if len(np.nonzero(mask4)[0]) != 0:
- mask4 = np.triu(mask4, k=1)
- serial_i = new3[mask4][..., 2]
- serial_m = new3[mask4][..., 5]
- for k in range(len(serial_i)):
- if (serial_m[k] not in delLeftLane) or (serial_m[k] not in delRightLane) or (serial_i[k] not in delLeftLane) or (serial_i[k] not in delRightLane):
- delRightLane, delLeftLane = devideLane(laneInfo, serial_i[k], serial_m[k], delRightLane, delLeftLane, laneInfo[serial_m[k]][1][0])
- return laneInfo, delRightLane, delLeftLane
-
-
- # 对lane中的y值坐标进行下采样
- def downSample(cnt_y):
- # number = len(cnt_y) * 0.0125
- # cnt_y = np.random.choice(cnt_y, size=number, replace=False)
- if len(cnt_y) >= 1000:
- cnt_y = cnt_y[1::80]
- elif len(cnt_y) >= 900 and len(cnt_y) < 1000:
- cnt_y = cnt_y[1::75]
- elif len(cnt_y) >= 800 and len(cnt_y) < 900:
- cnt_y = cnt_y[1::70]
- elif len(cnt_y) >= 700 and len(cnt_y) < 800:
- cnt_y = cnt_y[1::65]
- elif len(cnt_y) >= 600 and len(cnt_y) < 700:
- cnt_y = cnt_y[1::60]
- elif len(cnt_y) >= 500 and len(cnt_y) < 600:
- cnt_y = cnt_y[1::55]
- elif len(cnt_y) >= 400 and len(cnt_y) < 500:
- cnt_y = cnt_y[1::40]
- elif len(cnt_y) >= 300 and len(cnt_y) < 400:
- cnt_y = cnt_y[1::45]
- elif len(cnt_y) >= 200 and len(cnt_y) < 300:
- cnt_y = cnt_y[1::40]
- elif len(cnt_y) >= 100 and len(cnt_y) < 200:
- cnt_y = cnt_y[1::35]
- elif len(cnt_y) >= 50 and len(cnt_y) < 100:
- cnt_y = cnt_y[1::20]
- elif len(cnt_y) >= 20 and len(cnt_y) < 50:
- cnt_y = cnt_y[1::6]
- else:
- cnt_y = cnt_y[1::5]
- return cnt_y
-
-
- # 求最左侧lane或最右侧lane中的各点坐标
- def targetCOOR(laneInfo, delLane):
- """
- 输入
- laneInfo:存储各lane的信息,每条lane的信息为:[contours, y坐标范围, lane序号, arr_y, y坐标范围的长度, cnt]
- delLane:在确定最左侧lane或最右侧lane时,其存储需要删除的lane的序号。
- 输出
- laneCOOR:存储最左侧或最右侧lane簇中各点的坐标
- """
- laneCOOR = [] # 存储lane中各点的坐标
- centerSort = [] # 存储各lane按照中心点的y坐标排序后的结果
- for j in range(len(laneInfo)):
- if j not in delLane:
- cnt = laneInfo[j][0]
- rect = cv2.minAreaRect(cnt)
- cnt = np.squeeze(cnt, 1)
- cnt_y = laneInfo[j][1]
- cnt_y = downSample(cnt_y)
- centerSort.append([rect[0][1], cnt_y, laneInfo[j][3], cnt, j])
- centerSort = sorted(centerSort, key=(lambda x: x[0]))
- for i in range(len(centerSort)):
- centerCoordinate = []
- for j in range(len(centerSort[i][1])):
- index = np.where(centerSort[i][2] == centerSort[i][1][j])
- indexList = index[0].tolist()
- indexList.sort()
- x = (centerSort[i][3][indexList[0]][0] + centerSort[i][3][indexList[-1]][0]) / 2
- y = (centerSort[i][3][indexList[0]][1] + centerSort[i][3][indexList[-1]][1]) / 2
- centerCoordinate.append([x, y])
- laneCOOR = laneCOOR + centerCoordinate
- return laneCOOR
-
-
- # 二次函数曲线表达式:x = a*(y**2) + b*y + c,根据图像中一点的y坐标求二次曲线中的x坐标
- def predict(a, b, c, y):
- x = a * (y**2) + b * y + c
- return x
-
-
- def mixNoParking_road_postprocess(dets, mask, pars):
- """
- 对于字典traffic_dict中的各个键,说明如下:
- RoadArea:speedRoad的最小外接矩形的面积
- vehicleCOOR:是一个列表,用于存储被检测出的vehicle的坐标(vehicle检测模型)
- roundness:圆度 ,lane的长与宽的比率,作为判定是否为车道线的标准之一
- laneArea:车道线的最小外接矩形的面积
- ZoomFactor:图像在H和W方向上的缩放因子,其值小于1
- fitOrder:多点拟合曲线的阶数
- 最终输出格式:[[x0, y0, x1, y1, 车辆得分, cls, 违章停车得分, 违章类别], ...]
- 违章类别:0表示正常车辆,1表示违章车辆
- """
- det_cors = []
- for bb in dets:
- det_cors.append((int(bb[0]), int(bb[1])))
- det_cors.append((int(bb[2]), int(bb[3])))
- #print('#################line341:',det_cors)
- pars['vehicleCOOR'] = det_cors
- H, W = mask.shape[0:2] # mask的分辨率为360x640
- scaleH = pars['modelSize'][1] / H # 自适应调整缩放比例
- scaleW = pars['modelSize'][0] / W
- pars['ZoomFactor'] = {'x': scaleW, 'y': scaleH}
- new_hw = [int(H * scaleH), int(W * scaleW)]
- mask = cv2.resize(mask, (new_hw[1], new_hw[0]))
- if len(mask.shape) == 3:
- mask = mask[:, :, 0]
-
- t1 = time.time()
- imgRoad = mask.copy()
- imgVehicle = mask.copy()
- lane_line = mask.copy()
- # 将vehicle和lane过滤掉,只包含背景和speedRoad
- imgRoad[imgRoad == 2] = 1
- imgRoad[imgRoad == 3] = 1
- # 将speedRoad和lane过滤掉,只保留vehicle和背景
- imgVehicle[imgVehicle != 2] = 0
- # 将speedRoad和vehicle过滤掉,只保留lane和背景
- lane_line[lane_line < 3] = 0
- imgRoad = cv2.cvtColor(np.uint8(imgRoad), cv2.COLOR_RGB2BGR) # 道路
- imgVehicle = cv2.cvtColor(np.uint8(imgVehicle), cv2.COLOR_RGB2BGR) # 车辆
- lane_line = cv2.cvtColor(np.uint8(lane_line), cv2.COLOR_RGB2BGR)
-
- # 对车道线进行膨胀操作
- # kernel = np.ones((3, 3), np.uint8) # 膨胀范围
- # lane_line = cv2.dilate(lane_line, kernel, iterations=2) # 迭代次数为2
-
- t2 = time.time()
- img1 = cv2.cvtColor(imgRoad, cv2.COLOR_BGR2GRAY)
- roadContours, hierarchy = cv2.findContours(img1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
- t3 = time.time()
- # 存储所有speedRoad的信息
- allRoadCnt = storageRoad(roadContours, pars)
- t4 = time.time()
- img3 = cv2.cvtColor(lane_line, cv2.COLOR_BGR2GRAY)
- laneContours, hierarchy = cv2.findContours(img3, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
- t5 = time.time()
- laneInfo, delRightLane, delLeftLane = detLine(laneContours)
- t6 = time.time()
- # 存储所有lane的信息
- laneNumber = storageLane(laneContours, pars)
- t7 = time.time()
- # 存储所有vehicle的信息
- dets, vehicleBD, unnormVehicle, normVehicleCOOR = storageVehicle(pars, imgVehicle, dets)
- t8 = time.time()
- leftLaneCOOR = targetCOOR(laneInfo, delRightLane)
- rightLaneCOOR = targetCOOR(laneInfo, delLeftLane)
- rightLaneCOOR = np.array(rightLaneCOOR)
- rightX = rightLaneCOOR[:, 0]
- rightY = rightLaneCOOR[:, 1]
- leftLaneCOOR = np.array(leftLaneCOOR)
- leftX = leftLaneCOOR[:, 0]
- leftY = leftLaneCOOR[:, 1]
- # a_r,b_r,c_r分别是:最右侧车道线簇拟合的二次函数的二次项系数一次项系数,和常数项
- a_r, b_r, c_r = np.polyfit(rightY, rightX, pars['fitOrder'])[0], np.polyfit(rightY, rightX, pars['fitOrder'])[1], np.polyfit(rightY, rightX, pars['fitOrder'])[2]
- # a_l,b_l,c_l分别是:最左侧车道线簇拟合的二次函数的二次项系数,一次项系数,和常数项
- a_l, b_l, c_l = np.polyfit(leftY, leftX, pars['fitOrder'])[0], np.polyfit(leftY, leftX, pars['fitOrder'])[1], np.polyfit(leftY, leftX, pars['fitOrder'])[2]
-
- """以下四行代码用于在后处理函数外画图"""
- finalLane = []
- abc = [a_l, b_l, c_l, a_r, b_r, c_r] # abc中存储的是最左侧和最右侧二次函数的各项系数
- finalLane.append(rightLaneCOOR)
- finalLane.append(leftLaneCOOR)
- t9 = time.time()
- # 计算违停得分
- targetList = IllegalParkScore(vehicleBD, allRoadCnt, dets, laneNumber, unnormVehicle, normVehicleCOOR, a_l, b_l, c_l, a_r, b_r, c_r)
- t10 = time.time()
- time_infos = 'postTime:%.2f(分割时间:%.2f, findContours:%.2f, ruleJudge:%.2f, storageRoad:%.2f, detLane:%.2f, storageLane:%.2f, storageVehicle:%.2f, fitLine:%.2f, IllegalParkScore:%.2f)' % (
- get_ms(t10, t1), get_ms(t2, t1), get_ms(t3, t2), get_ms(t8, t3), get_ms(t4, t3), get_ms(t6, t5), get_ms(t7, t6), get_ms(t8, t7), get_ms(t9, t8), get_ms(t10, t9))
- #, finalLane, lane_line, abc
- targetList = [ [ *b[0:4],b[6] if b[6]>0 else b[4], b[7] ] for b in targetList ]
- #print('---------line415:',targetList)
- return targetList, time_infos
|