|
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- """
- Train and eval functions used in main.py
- Mostly copy-paste from DETR (https://github.com/facebookresearch/detr).
- """
- import math
- import os
- import sys
- from typing import Iterable
-
- import torch
- #print( os.path.abspath( os.path.dirname(__file__) ) )
- sys.path.append( os.path.abspath( os.path.dirname(__file__) ) )
- import util.misc as utils
- from util.misc import NestedTensor
- import numpy as np
- import time
- import torchvision.transforms as standard_transforms
- import cv2
- import PIL
-
- class DictToObject:
- def __init__(self, dictionary):
- for key, value in dictionary.items():
- if isinstance(value, dict):
- setattr(self, key, DictToObject(value))
- else:
- setattr(self, key, value)
-
- def letterImage(img,minShape,maxShape):
- iH,iW = img.shape[0:2]
- minH,minW = minShape[2:]
- maxH,maxW = maxShape[2:]
- flag=False
- if iH<minH or iW<minW:
- fy = iH/minH; fx = iW/minW; ff = min(fx,fy)
- newH,newW = int(iH/ff), int(iW/ff);flag=True
- if iH>maxH or iW>maxW:
- fy = iH/maxH; fx = iW/maxW; ff = max(fx,fy)
- newH,newW = int(iH/ff), int(iW/ff);flag=True
- if flag:
- assert minH<=newH and newH<= maxH , 'iH%d,iW:%d , newH:%d newW:%d, fx:%.1f fy:%.1f'%(iH,iW,newH,newW,fx,fy)
- assert minW<=newW and newW<= maxW, 'iH%d,iW:%d , newH:%d newW:%d, fx:%.1f fy:%.1f'%(iH,iW,newH,newW,fx,fy)
- return cv2.resize(img,(newW,newH))
- else:
- return img
-
-
-
- def postprocess(outputs,threshold=0.5):
-
- outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
- outputs_points = outputs['pred_points'][0]
- points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
- scores = outputs_scores[outputs_scores > threshold].detach().cpu().numpy().tolist()
-
- return points,scores
-
- def toOBBformat(points,scores,cls=0):
- outs = []
- for i in range(len(points)):
- pt,score = points[i],scores[i]
- pts4=[pt]*4
- ret = [ pts4,score,cls]
- outs.append(ret)
- return outs
-
- #[ [ [ (x0,y0),(x1,y1),(x2,y2),(x3,y3) ],score, cls ], [ [ (x0,y0),(x1,y1),(x2,y2),(x3,y3) ],score ,cls ],........ ]
-
- def preprocess(img,mean,std,minShape,maxShape):
- #img--numpy,(H,W,C)
- #输入-RGB格式,(C,H,W)
- if isinstance(img,PIL.Image.Image):
- img = np.array(img)
-
- img = letterImage(img,minShape,maxShape)
- height,width = img.shape[0:2]
-
- new_width = width // 128 * 128
- new_height = height // 128 * 128
- img = cv2.resize( img, (new_width, new_height) )
-
- img = img/255.
- tmpImg = np.zeros((new_height,new_width,3))
-
-
- tmpImg[:,:,0]=(img[:,:,0]-mean[0])/std[0]
- tmpImg[:,:,1]=(img[:,:,1]-mean[1])/std[1]
- tmpImg[:,:,2]=(img[:,:,2]-mean[2])/std[2]
- tmpImg = tmpImg.transpose((2,0,1)).astype(np.float32)# HWC->CHW
- #tmpImg = tmpImg[np.newaxis,:,:,:]#CHW->NCHW
- return tmpImg
-
- class DeNormalize(object):
- def __init__(self, mean, std):
- self.mean = mean
- self.std = std
-
- def __call__(self, tensor):
- for t, m, s in zip(tensor, self.mean, self.std):
- t.mul_(s).add_(m)
- return tensor
-
- # generate the reference points in grid layout
- def generate_anchor_points(stride=16, row=3, line=3):
- row_step = stride / row
- line_step = stride / line
-
- shift_x = (np.arange(1, line + 1) - 0.5) * line_step - stride / 2
- shift_y = (np.arange(1, row + 1) - 0.5) * row_step - stride / 2
-
- shift_x, shift_y = np.meshgrid(shift_x, shift_y)
-
- anchor_points = np.vstack((
- shift_x.ravel(), shift_y.ravel()
- )).transpose()
-
- return anchor_points
- def shift(shape, stride, anchor_points):
- shift_x = (np.arange(0, shape[1]) + 0.5) * stride
- shift_y = (np.arange(0, shape[0]) + 0.5) * stride
-
- shift_x, shift_y = np.meshgrid(shift_x, shift_y)
-
- shifts = np.vstack((
- shift_x.ravel(), shift_y.ravel()
- )).transpose()
-
- A = anchor_points.shape[0]
- K = shifts.shape[0]
- all_anchor_points = (anchor_points.reshape((1, A, 2)) + shifts.reshape((1, K, 2)).transpose((1, 0, 2)))
- all_anchor_points = all_anchor_points.reshape((K * A, 2))
-
- return all_anchor_points
-
-
- class AnchorPointsf(object):
- def __init__(self, pyramid_levels=[3,], strides=None, row=3, line=3,device='cpu'):
-
- if pyramid_levels is None:
- self.pyramid_levels = [3, 4, 5, 6, 7]
- else:
- self.pyramid_levels = pyramid_levels
-
- if strides is None:
- self.strides = [2 ** x for x in self.pyramid_levels]
-
- self.row = row
- self.line = line
- self.device = device
- def eval(self, image):
- image_shape = image.shape[2:]
- image_shape = np.array(image_shape)
- image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]
-
- all_anchor_points = np.zeros((0, 2)).astype(np.float32)
- # get reference points for each level
- for idx, p in enumerate(self.pyramid_levels):
- anchor_points = generate_anchor_points(2**p, row=self.row, line=self.line)
- shifted_anchor_points = shift(image_shapes[idx], self.strides[idx], anchor_points)
- all_anchor_points = np.append(all_anchor_points, shifted_anchor_points, axis=0)
-
- all_anchor_points = np.expand_dims(all_anchor_points, axis=0)
- # send reference points to device
- if torch.cuda.is_available() and self.device!='cpu':
- return torch.from_numpy(all_anchor_points.astype(np.float32)).cuda()
- else:
- return torch.from_numpy(all_anchor_points.astype(np.float32))
- def vis(samples, targets, pred, vis_dir, des=None):
- '''
- samples -> tensor: [batch, 3, H, W]
- targets -> list of dict: [{'points':[], 'image_id': str}]
- pred -> list: [num_preds, 2]
- '''
- gts = [t['point'].tolist() for t in targets]
-
- pil_to_tensor = standard_transforms.ToTensor()
-
- restore_transform = standard_transforms.Compose([
- DeNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- standard_transforms.ToPILImage()
- ])
- # draw one by one
- for idx in range(samples.shape[0]):
- sample = restore_transform(samples[idx])
- sample = pil_to_tensor(sample.convert('RGB')).numpy() * 255
- sample_gt = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
- sample_pred = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
-
- max_len = np.max(sample_gt.shape)
-
- size = 2
- # draw gt
- for t in gts[idx]:
- sample_gt = cv2.circle(sample_gt, (int(t[0]), int(t[1])), size, (0, 255, 0), -1)
- # draw predictions
- for p in pred[idx]:
- sample_pred = cv2.circle(sample_pred, (int(p[0]), int(p[1])), size, (0, 0, 255), -1)
-
- name = targets[idx]['image_id']
- # save the visualized images
- if des is not None:
- cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_gt.jpg'.format(int(name),
- des, len(gts[idx]), len(pred[idx]))), sample_gt)
- cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_pred.jpg'.format(int(name),
- des, len(gts[idx]), len(pred[idx]))), sample_pred)
- else:
- cv2.imwrite(
- os.path.join(vis_dir, '{}_gt_{}_pred_{}_gt.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
- sample_gt)
- cv2.imwrite(
- os.path.join(vis_dir, '{}_gt_{}_pred_{}_pred.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
- sample_pred)
-
-
- # the training routine
- def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
- data_loader: Iterable, optimizer: torch.optim.Optimizer,
- device: torch.device, epoch: int, max_norm: float = 0):
- model.train()
- criterion.train()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
- # iterate all training samples
- for samples, targets in data_loader:
- samples = samples.to(device)
- targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
- # forward
- outputs = model(samples)
- # calc the losses
- loss_dict = criterion(outputs, targets)
- weight_dict = criterion.weight_dict
- losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
-
- # reduce all losses
- loss_dict_reduced = utils.reduce_dict(loss_dict)
- loss_dict_reduced_unscaled = {f'{k}_unscaled': v
- for k, v in loss_dict_reduced.items()}
- loss_dict_reduced_scaled = {k: v * weight_dict[k]
- for k, v in loss_dict_reduced.items() if k in weight_dict}
- losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
-
- loss_value = losses_reduced_scaled.item()
-
- if not math.isfinite(loss_value):
- print("Loss is {}, stopping training".format(loss_value))
- print(loss_dict_reduced)
- sys.exit(1)
- # backward
- optimizer.zero_grad()
- losses.backward()
- if max_norm > 0:
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
- optimizer.step()
- # update logger
- metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
- metric_logger.update(lr=optimizer.param_groups[0]["lr"])
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
-
- # the inference routine
- @torch.no_grad()
- def evaluate_crowd_no_overlap(model, data_loader, device, vis_dir=None):
- model.eval()
-
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
- # run inference on all images to calc MAE
- maes = []
- mses = []
- for samples, targets in data_loader:
- samples = samples.to(device)
-
- outputs = model(samples)
- outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
-
- outputs_points = outputs['pred_points'][0]
-
- gt_cnt = targets[0]['point'].shape[0]
- # 0.5 is used by default
- threshold = 0.5
-
- points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
- predict_cnt = int((outputs_scores > threshold).sum())
- # if specified, save the visualized images
- if vis_dir is not None:
- vis(samples, targets, [points], vis_dir)
- # accumulate MAE, MSE
- mae = abs(predict_cnt - gt_cnt)
- mse = (predict_cnt - gt_cnt) * (predict_cnt - gt_cnt)
- maes.append(float(mae))
- mses.append(float(mse))
- # calc MAE, MSE
- mae = np.mean(maes)
- mse = np.sqrt(np.mean(mses))
-
- return mae, mse
|