|
-
- import cv2,os,time,json
- from models.experimental import attempt_load
- from segutils.segmodel import SegModel,get_largest_contours
- from segutils.trtUtils import segtrtEval,yolov5Trtforward,OcrTrtForward
- from segutils.trafficUtils import trafficPostProcessing,colour_code_segmentation,get_label_info,trafficPostProcessingV2
-
-
- from utils.torch_utils import select_device
- from utilsK.queRiver import get_labelnames,get_label_arrays,post_process_,img_pad,draw_painting_joint
-
- from utils.datasets import letterbox
- import numpy as np
- import torch
- import math
- from PIL import Image
- import torch.nn.functional as F
- from copy import deepcopy
- def xywh2xyxy(box,iW=None,iH=None):
- xc,yc,w,h = box[0:4]
- x0 =max(0, xc-w/2.0)
- x1 =min(1, xc+w/2.0)
- y0=max(0, yc-h/2.0)
- y1=min(1,yc+h/2.0)
- if iW: x0,x1 = x0*iW,x1*iW
- if iH: y0,y1 = y0*iH,y1*iH
- return [x0,y0,x1,y1]
-
-
- def get_ms(t2,t1):
- return (t2-t1)*1000.0
- def get_postProcess_para(parfile):
- with open(parfile) as fp:
- par = json.load(fp)
- assert 'post_process' in par.keys(), ' parfile has not key word:post_process'
- parPost=par['post_process']
-
- return parPost["conf_thres"],parPost["iou_thres"],parPost["classes"],parPost["rainbows"]
- def AI_process(im0s,model,segmodel,names,label_arraylist,rainbows,objectPar={ 'half':True,'device':'cuda:0' ,'conf_thres':0.25,'iou_thres':0.45,'allowedList':[0,1,2,3],'slopeIndex':[5,6,7],'segRegionCnt':1, 'trtFlag_det':False,'trtFlag_seg':False }, font={ 'line_thickness':None, 'fontSize':None,'boxLine_thickness':None,'waterLineColor':(0,255,255),'waterLineWidth':3} ,segPar={'modelSize':(640,360),'mean':(0.485, 0.456, 0.406),'std' :(0.229, 0.224, 0.225),'numpy':False, 'RGB_convert_first':True},mode='others',postPar=None):
-
- #输入参数
- # im0s---原始图像列表
- # model---检测模型,segmodel---分割模型(如若没有用到,则为None)
- #
- #输出:两个元素(列表,字符)构成的元组,[im0s[0],im0,det_xywh,iframe],strout
- # [im0s[0],im0,det_xywh,iframe]中,
- # im0s[0]--原始图像,im0--AI处理后的图像,iframe--帧号/暂时不需用到。
- # det_xywh--检测结果,是一个列表。
- # 其中每一个元素表示一个目标构成如:[float(cls_c), xc,yc,w,h, float(conf_c)]
- # #cls_c--类别,如0,1,2,3; xc,yc,w,h--中心点坐标及宽;conf_c--得分, 取值范围在0-1之间
- # #strout---统计AI处理个环节的时间
- # Letterbox
-
- half,device,conf_thres,iou_thres,allowedList = objectPar['half'],objectPar['device'],objectPar['conf_thres'],objectPar['iou_thres'],objectPar['allowedList']
- slopeIndex, trtFlag_det,trtFlag_seg,segRegionCnt = objectPar['slopeIndex'],objectPar['trtFlag_det'],objectPar['trtFlag_seg'],objectPar['segRegionCnt']
-
- time0=time.time()
- if trtFlag_det:
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
- else:
- img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s];padInfos=None
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- time01=time.time()
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if segmodel:
- if trtFlag_seg:
- seg_pred,segstr = segtrtEval(segmodel,im0s[0],par=segPar)
- else:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- segFlag=True
- else:
- seg_pred = None;segFlag=False;segstr='Not implemented'
- if mode=='highWay3.0':
- seg_pred_mulcls = seg_pred.copy()
- seg_pred = (seg_pred==1).astype(np.uint8) ###把路提取出来,路的类别是1
-
- time1=time.time()
- if trtFlag_det:
- pred = yolov5Trtforward(model,img)
- else:
- pred = model(img,augment=False)[0]
-
- time2=time.time()
- datas = [[''], img, im0s, None,pred,seg_pred,10]
- ObjectPar={ 'object_config':allowedList, 'slopeIndex':slopeIndex ,'segmodel':segFlag,'segRegionCnt':segRegionCnt }
-
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,ObjectPar=ObjectPar,font=font,padInfos=padInfos)
-
- if mode=='highWay3.0':
- assert postPar , ' postPar not implemented'
- label_info = get_label_info(postPar['label_csv'])
- seg_pred=cv2.resize(seg_pred_mulcls,( segPar['modelSize'][0] , segPar['modelSize'] [1]) )
- imH,imW = im0s[0].shape[0:2]
- mmH,mmW = seg_pred.shape[0:2]
- fx=mmW/imW;fy=mmH/imH
- det_coords=[]
-
- det_coords_original=[]
- for box in p_result[2]:
- b_0 = box[1:5]
- b_0.insert(0,box[0]);b_0.append(box[5] )
- det_coords_original.append( b_0 )
- if int(box[0]) != 1: continue
- det_coords.append(b_0)
-
-
- postPar['ZoomFactor']={'x':mmW/imW ,'y':mmH/imH}
- postPar['mask']=seg_pred;postPar['det']=deepcopy(det_coords)
- postPar['label_info']=label_info
- tlist = list(postPar.keys()); tlist.sort()
- if len(det_coords)> 0:
-
- list8, image,time_infos = trafficPostProcessingV2(postPar)
- Accident_results = np.array(list8,dtype=object)
- acc_det=[]
- for bpoints in list8:
- if bpoints[9]>conf_thres:
- xyxy=bpoints[1:5];xyxy=[int(x) for x in xyxy]
- cls=9;conf=bpoints[9];
- box_acc = [cls,*xyxy,conf]
- acc_det.append(box_acc)
- if cls in allowedList:
- p_result[1] = draw_painting_joint(xyxy,p_result[1],label_arraylist[int(cls)],score=conf,color=rainbows[int(cls)%20],font=font,socre_location="leftBottom")
-
- det_coords_original.extend(acc_det)
- p_result[2]= deepcopy(det_coords_original)
-
- #print( ' time:',time_infos,' results.shape:',Accident_results.shape, p_result[2])
- time_info = 'letterbox:%.1f, seg:%.1f , infer:%.1f,%s, seginfo:%s'%( (time01-time0)*1000, (time1-time01)*1000 ,(time2-time1)*1000,timeOut , segstr )
- if mode=='highWay3.0':
- p_result.append(seg_pred_mulcls)
-
- return p_result,time_info
-
- def AI_Seg_process(im0s,segmodel,digitWordFont,trtFlag_seg=True,segPar={'modelSize':(640,360),'mean':(0.485, 0.456, 0.406),'std' :(0.229, 0.224, 0.225),'numpy':False, 'RGB_convert_first':True},postPar= {'label_csv': './AIlib2/weights/conf/trafficAccident/class_dict.csv', 'speedRoadArea': 5100, 'vehicleArea': 100, 'speedRoadVehicleAngleMin': 15, 'speedRoadVehicleAngleMax': 75, 'vehicleLengthWidthThreshold': 4, 'vehicleSafeDistance': 7}):
- '''
- 输入参数
- im0s---原始图像列表
- segmodel---分割模型,segmodel---分割模型(如若没有用到,则为None)
- digitWordFont--显示字体,数字等参数
- trtFlag_seg--模型是否是TRT格式
- segPar--分割模型的参数
- postPar--后处理参数
- 输出
- seg_pred--返回语义分割的结果图(0,1,2...表示)
- img_draw--原图上带有矩形框的图
- segstr-----文本数据包括时间信息
- list1-----返回目标的坐标结果,每一个目标用[ cls, x0,y0,x1,y1,conf ]
- '''
- time1=time.time()
- H,W=im0s[0].shape[0:2]
- img_draw=im0s[0].copy()
- if trtFlag_seg:
- seg_pred,segstr = segtrtEval(segmodel,im0s[0],par=segPar)
- else:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- time2 = time.time()
- label_info = get_label_info(postPar['label_csv'])
- postPar['CCS']=colour_code_segmentation(seg_pred.copy(), label_info)
- postPar['sourceImageSize'] = im0s[0].shape[0:2]
- postPar['seg_pred_size'] = seg_pred.shape[0:2]
-
- list1,post_time_infos = trafficPostProcessing(postPar)
- list2=[]
- cls=0
- label_arraylist=digitWordFont['label_arraylist']
- rainbows=digitWordFont['rainbows']
- for bpoints in list1:
- #print('###line104:',bpoints)
- bpoints=np.array(bpoints)
- x0=np.min( bpoints[:,0] )
- y0=np.min( bpoints[:,1] )
- x1=np.max( bpoints[:,0] )
- y1=np.max( bpoints[:,1] )
- conf= ((x0+x1)/W + (y0+y1)/H)/4.0;
- conf=1.0 - math.fabs((conf-0.5)/0.5)
- xyxy=[x0,y0,x1,y1]
- xyxy=[int(x+0.5) for x in xyxy]
- #float(cls_c), *xywh, float(conf_c)]
- list2.append( [ cls, x0,y0,x1,y1,conf ] )
- img_draw = draw_painting_joint(xyxy,img_draw,label_arraylist[int(cls)],score=conf,color=rainbows[int(cls)%20],font=digitWordFont)
-
-
- segstr = 'segInfer:%.2f %s '%( (time2-time1)*1000.0,post_time_infos )
-
- return seg_pred,img_draw,segstr,list2
- def AI_process_v2(im0s,model,segmodel,names,label_arraylist,rainbows,half=True,device=' cuda:0',conf_thres=0.25, iou_thres=0.45,allowedList=[0,1,2,3], font={ 'line_thickness':None, 'fontSize':None,'boxLine_thickness':None,'waterLineColor':(0,255,255),'waterLineWidth':3} ):
- #输入参数
- # im0s---原始图像列表
- # model---检测模型,segmodel---分割模型(如若没有用到,则为None)
- #输出:两个元素(列表,字符)构成的元组,[im0s[0],im0,det_xywh,iframe],strout
- # [im0s[0],im0,det_xywh,iframe]中,
- # im0s[0]--原始图像,im0--AI处理后的图像,iframe--帧号/暂时不需用到。
- # det_xywh--检测结果,是一个列表。
- # 其中每一个元素表示一个目标构成如:[float(cls_c), xc,yc,w,h, float(conf_c)]
- # #cls_c--类别,如0,1,2,3; xc,yc,w,h--中心点坐标及宽;conf_c--得分, 取值范围在0-1之间
- # #strout---统计AI处理个环节的时间
-
-
-
- # Letterbox
- time0=time.time()
- #img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s]
-
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
-
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- time01=time.time()
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if segmodel:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- segFlag=True
- else:
- seg_pred = None;segFlag=False
- time1=time.time()
- pred = model(img,augment=False)
- time2=time.time()
- datas = [[''], img, im0s, None,pred,seg_pred,10]
-
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,object_config=allowedList,segmodel=segFlag,font=font,padInfos=padInfos)
- time_info = 'letterbox:%.1f, seg:%.1f , infer:%.1f,%s, seginfo:%s'%( (time01-time0)*1000, (time1-time01)*1000 ,(time2-time1)*1000,timeOut , segstr )
- return p_result,time_info
-
-
- def AI_process_forest(im0s,model,segmodel,names,label_arraylist,rainbows,half=True,device=' cuda:0',conf_thres=0.25, iou_thres=0.45,allowedList=[0,1,2,3], font={ 'line_thickness':None, 'fontSize':None,'boxLine_thickness':None,'waterLineColor':(0,255,255),'waterLineWidth':3} ,trtFlag_det=False):
- #输入参数
- # im0s---原始图像列表
- # model---检测模型,segmodel---分割模型(如若没有用到,则为None)
- #输出:两个元素(列表,字符)构成的元组,[im0s[0],im0,det_xywh,iframe],strout
- # [im0s[0],im0,det_xywh,iframe]中,
- # im0s[0]--原始图像,im0--AI处理后的图像,iframe--帧号/暂时不需用到。
- # det_xywh--检测结果,是一个列表。
- # 其中每一个元素表示一个目标构成如:[float(cls_c), xc,yc,w,h, float(conf_c)]
- # #cls_c--类别,如0,1,2,3; xc,yc,w,h--中心点坐标及宽;conf_c--得分, 取值范围在0-1之间
- # #strout---统计AI处理个环节的时间
-
- # Letterbox
- time0=time.time()
- if trtFlag_det:
- img, padInfos = img_pad(im0s[0], size=(640,640,3)) ;img = [img]
- else:
- img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s];padInfos=None
- #img = [letterbox(x, 640, auto=True, stride=32)[0] for x in im0s]
- # Stack
- img = np.stack(img, 0)
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
- img = np.ascontiguousarray(img)
-
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
-
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if segmodel:
- seg_pred,segstr = segmodel.eval(im0s[0] )
- segFlag=True
- else:
- seg_pred = None;segFlag=False
- time1=time.time()
- pred = yolov5Trtforward(model,img) if trtFlag_det else model(img,augment=False)[0]
-
-
- time2=time.time()
- datas = [[''], img, im0s, None,pred,seg_pred,10]
-
- ObjectPar={ 'object_config':allowedList, 'slopeIndex':[] ,'segmodel':segFlag,'segRegionCnt':0 }
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,ObjectPar=ObjectPar,font=font,padInfos=padInfos)
-
- #p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,10,object_config=allowedList,segmodel=segFlag,font=font,padInfos=padInfos)
- time_info = 'letterbox:%.1f, infer:%.1f, '%( (time1-time0)*1000,(time2-time1)*1000 )
- return p_result,time_info+timeOut
-
- def ocr_process(pars):
-
- img_patch,engine,context,converter,AlignCollate_normal,device=pars[0:6]
- time1 = time.time()
- img_tensor = AlignCollate_normal([ Image.fromarray(img_patch,'L') ])
- img_input = img_tensor.to('cuda:0')
- time2 = time.time()
-
- preds,trtstr=OcrTrtForward(engine,[img_input],context)
- time3 = time.time()
-
- batch_size = preds.size(0)
- preds_size = torch.IntTensor([preds.size(1)] * batch_size)
-
- ######## filter ignore_char, rebalance
- preds_prob = F.softmax(preds, dim=2)
- preds_prob = preds_prob.cpu().detach().numpy()
- pred_norm = preds_prob.sum(axis=2)
- preds_prob = preds_prob/np.expand_dims(pred_norm, axis=-1)
- preds_prob = torch.from_numpy(preds_prob).float().to(device)
- _, preds_index = preds_prob.max(2)
- preds_index = preds_index.view(-1)
- time4 = time.time()
- preds_str = converter.decode_greedy(preds_index.data.cpu().detach().numpy(), preds_size.data)
- time5 = time.time()
-
- info_str= ('pre-process:%.2f TRTforward:%.2f (%s) postProcess:%2.f decoder:%.2f, Total:%.2f , pred:%s'%(get_ms(time2,time1 ),get_ms(time3,time2 ),trtstr, get_ms(time4,time3 ), get_ms(time5,time4 ), get_ms(time5,time1 ), preds_str ) )
- return preds_str,info_str
- def main():
- ##预先设置的参数
- device_='1' ##选定模型,可选 cpu,'0','1'
-
- ##以下参数目前不可改
- Detweights = "weights/yolov5/class5/best_5classes.pt"
- seg_nclass = 2
- Segweights = "weights/BiSeNet/checkpoint.pth"
- conf_thres,iou_thres,classes= 0.25,0.45,5
- labelnames = "weights/yolov5/class5/labelnames.json"
- rainbows = [ [0,0,255],[0,255,0],[255,0,0],[255,0,255],[255,255,0],[255,129,0],[255,0,127],[127,255,0],[0,255,127],[0,127,255],[127,0,255],[255,127,255],[255,255,127],[127,255,255],[0,255,255],[255,127,255],[127,255,255], [0,127,0],[0,0,127],[0,255,255]]
- allowedList=[0,1,2,3]
-
-
- ##加载模型,准备好显示字符
- device = select_device(device_)
- names=get_labelnames(labelnames)
- label_arraylist = get_label_arrays(names,rainbows,outfontsize=40,fontpath="conf/platech.ttf")
- half = device.type != 'cpu' # half precision only supported on CUDA
- model = attempt_load(Detweights, map_location=device) # load FP32 model
- if half: model.half()
- segmodel = SegModel(nclass=seg_nclass,weights=Segweights,device=device)
-
-
-
- ##图像测试
- #url='images/examples/20220624_响水河_12300_1621.jpg'
- impth = 'images/examples/'
- outpth = 'images/results/'
- folders = os.listdir(impth)
- for i in range(len(folders)):
- imgpath = os.path.join(impth, folders[i])
- im0s=[cv2.imread(imgpath)]
- time00 = time.time()
- p_result,timeOut = AI_process(im0s,model,segmodel,names,label_arraylist,rainbows,half,device,conf_thres, iou_thres,allowedList,fontSize=1.0)
- time11 = time.time()
- image_array = p_result[1]
- cv2.imwrite( os.path.join( outpth,folders[i] ) ,image_array )
- print('----process:%s'%(folders[i]), (time.time() - time11) * 1000)
-
-
-
-
-
- if __name__=="__main__":
- main()
|