|
- import torch
- import argparse
- import sys,os
- sys.path.extend(['segutils'])
- from core.models.bisenet import BiSeNet
- from model_stages import BiSeNet_STDC
- from torchvision import transforms
- import cv2,glob
- import numpy as np
- import matplotlib.pyplot as plt
- import time
- from pathlib import Path
- from trtUtils import TRTModule,segTrtForward,segtrtEval,segPreProcess_image,get_ms
- from concurrent.futures import ThreadPoolExecutor
- import tensorrt as trt
- from copy import deepcopy
- import onnx
- import numpy as np
- import onnxruntime as ort
- import cv2
- #import pycuda.driver as cuda
- class SegModel_BiSeNet(object):
- def __init__(self, nclass=2,weights=None,modelsize=512,device='cuda:0'):
- #self.args = args
- self.model = BiSeNet(nclass)
- checkpoint = torch.load(weights)
- if isinstance(modelsize,list) or isinstance(modelsize,tuple):
- self.modelsize = modelsize
- else: self.modelsize = (modelsize,modelsize)
- self.model.load_state_dict(checkpoint['model'])
- self.device = device
- self.model= self.model.to(self.device)
- '''self.composed_transforms = transforms.Compose([
-
- transforms.Normalize(mean=(0.335, 0.358, 0.332), std=(0.141, 0.138, 0.143)),
- transforms.ToTensor()]) '''
- self.mean = (0.335, 0.358, 0.332)
- self.std = (0.141, 0.138, 0.143)
- def eval(self,image):
- time0 = time.time()
- imageH,imageW,imageC = image.shape
- image = self.preprocess_image(image)
- time1 = time.time()
- self.model.eval()
- image = image.to(self.device)
- with torch.no_grad():
- output = self.model(image)
-
- time2 = time.time()
- pred = output.data.cpu().numpy()
- pred = np.argmax(pred, axis=1)[0]#得到每行
- time3 = time.time()
- pred = cv2.resize(pred.astype(np.uint8),(imageW,imageH))
- time4 = time.time()
- outstr= 'pre-precess:%.1f ,infer:%.1f ,post-precess:%.1f ,post-resize:%.1f, total:%.1f \n '%( self.get_ms(time1,time0),self.get_ms(time2,time1),self.get_ms(time3,time2),self.get_ms(time4,time3),self.get_ms(time4,time0) )
-
- #print('pre-precess:%.1f ,infer:%.1f ,post-precess:%.1f ,post-resize:%.1f, total:%.1f '%( self.get_ms(time1,time0),self.get_ms(time2,time1),self.get_ms(time3,time2),self.get_ms(time4,time3),self.get_ms(time4,time0) ))
- return pred,outstr
- def get_ms(self,t1,t0):
- return (t1-t0)*1000.0
- def preprocess_image(self,image):
-
- time0 = time.time()
- image = cv2.resize(image,self.modelsize)
- time0 = time.time()
- image = image.astype(np.float32)
- image /= 255.0
-
- image[:,:,0] -=self.mean[0]
- image[:,:,1] -=self.mean[1]
- image[:,:,2] -=self.mean[2]
-
- image[:,:,0] /= self.std[0]
- image[:,:,1] /= self.std[1]
- image[:,:,2] /= self.std[2]
- image = cv2.cvtColor( image,cv2.COLOR_RGB2BGR)
- #image -= self.mean
- #image /= self.std
- image = np.transpose(image, ( 2, 0, 1))
-
- image = torch.from_numpy(image).float()
- image = image.unsqueeze(0)
-
-
- return image
- class SegModel_STDC(object):
- def __init__(self, nclass=2,weights=None,modelsize=512,device='cuda:0',modelSize=(360,640)):
- #self.args = args
- self.model = BiSeNet_STDC(backbone='STDCNet813', n_classes=nclass,
- use_boundary_2=False, use_boundary_4=False,
- use_boundary_8=True, use_boundary_16=False,
- use_conv_last=False,modelSize=modelSize)
- self.device = device
- self.model.load_state_dict(torch.load(weights, map_location=torch.device(self.device) ))
- self.model= self.model.to(self.device)
- self.mean = (0.485, 0.456, 0.406)
- self.std = (0.229, 0.224, 0.225)
- self.modelSize = modelSize
-
- def eval(self,image):
- time0 = time.time()
- imageH, imageW, _ = image.shape
-
- image = self.RB_convert(image)
-
- img = self.preprocess_image(image)
-
- if self.device != 'cpu':
- imgs = img.to(self.device)
- else:imgs=img
- time1 = time.time()
- self.model.eval()
-
- with torch.no_grad():
- output = self.model(imgs)
-
- time2 = time.time()
- pred = output.data.cpu().numpy()
- pred = np.argmax(pred, axis=1)[0]#得到每行
- time3 = time.time()
- pred = cv2.resize(pred.astype(np.uint8),(imageW,imageH))
- time4 = time.time()
- outstr= 'pre-precess:%.1f ,infer:%.1f ,post-cpu-argmax:%.1f ,post-resize:%.1f, total:%.1f \n '%( self.get_ms(time1,time0),self.get_ms(time2,time1),self.get_ms(time3,time2),self.get_ms(time4,time3),self.get_ms(time4,time0) )
-
- return pred,outstr
- def get_ms(self,t1,t0):
- return (t1-t0)*1000.0
- def preprocess_image(self,image):
-
- image = cv2.resize(image, (self.modelSize[1],self.modelSize[0] ), interpolation=cv2.INTER_LINEAR)
- image = image.astype(np.float32)
- image /= 255.0
-
- image[:, :, 0] -= self.mean[0]
- image[:, :, 1] -= self.mean[1]
- image[:, :, 2] -= self.mean[2]
-
- image[:, :, 0] /= self.std[0]
- image[:, :, 1] /= self.std[1]
- image[:, :, 2] /= self.std[2]
-
- image = np.transpose(image, (2, 0, 1))
- image = torch.from_numpy(image).float()
- image = image.unsqueeze(0)
-
- return image
- def RB_convert(self,image):
- image_c = image.copy()
- image_c[:,:,0] = image[:,:,2]
- image_c[:,:,2] = image[:,:,0]
- return image_c
-
-
- def get_largest_contours(contours):
- areas = [cv2.contourArea(x) for x in contours]
- max_area = max(areas)
- max_id = areas.index(max_area)
-
- return max_id
-
- def infer_usage(par):
- #par={'modelSize':(inputShape[3],inputShape[2]),'mean':(0.485, 0.456, 0.406),'std':(0.229, 0.224, 0.225),'RGB_convert_first':True,
- # 'weights':trtFile,'device':device,'max_threads':1,
- # 'image_dir':'../../AIdemo2/images/trafficAccident/','out_dir' :'results'}
-
-
- segmodel = par['segmodel']
-
- image_urls=glob.glob('%s/*'%(par['image_dir']))
- out_dir =par['out_dir']
- os.makedirs(out_dir,exist_ok=True)
- for im,image_url in enumerate(image_urls[0:1]):
- #image_url = '/home/thsw2/WJ/data/THexit/val/images/54(199).JPG'
- image_array0 = cv2.imread(image_url)
- H,W,C = image_array0.shape
- time_1=time.time()
- pred,outstr = segmodel.eval(image_array0 )
-
-
- binary0 = pred.copy()
-
-
- time0 = time.time()
- contours, hierarchy = cv2.findContours(binary0,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
- max_id = -1
- time1 = time.time()
- time2 = time.time()
-
- cv2.drawContours(image_array0,contours,max_id,(0,255,255),3)
- time3 = time.time()
- out_url='%s/%s'%(out_dir,os.path.basename(image_url))
- ret = cv2.imwrite(out_url,image_array0)
- cv2.imwrite(out_url.replace('.','_mask.'),(pred*50).astype(np.uint8))
- time4 = time.time()
-
- print('image:%d,%s ,%d*%d,eval:%.1f ms, %s,findcontours:%.1f ms,draw:%.1f total:%.1f'%(im,os.path.basename(image_url),H,W,get_ms(time0,time_1),outstr,get_ms(time1,time0), get_ms(time3,time2),get_ms(time3,time_1)) )
-
- def colorstr(*input):
- # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
- *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
- colors = {'black': '\033[30m', # basic colors
- 'red': '\033[31m',
- 'green': '\033[32m',
- 'yellow': '\033[33m',
- 'blue': '\033[34m',
- 'magenta': '\033[35m',
- 'cyan': '\033[36m',
- 'white': '\033[37m',
- 'bright_black': '\033[90m', # bright colors
- 'bright_red': '\033[91m',
- 'bright_green': '\033[92m',
- 'bright_yellow': '\033[93m',
- 'bright_blue': '\033[94m',
- 'bright_magenta': '\033[95m',
- 'bright_cyan': '\033[96m',
- 'bright_white': '\033[97m',
- 'end': '\033[0m', # misc
- 'bold': '\033[1m',
- 'underline': '\033[4m'}
- return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
- def file_size(path):
- # Return file/dir size (MB)
- path = Path(path)
- if path.is_file():
- return path.stat().st_size / 1E6
- elif path.is_dir():
- return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
- else:
- return 0.0
-
-
- def toONNX(seg_model,onnxFile,inputShape=(1,3,360,640),device=torch.device('cuda:0'),dynamic=False ):
-
- import onnx
-
- im = torch.rand(inputShape).to(device)
- seg_model.eval()
- out=seg_model(im)
- print('###test model infer example over ####')
- train=False
- dynamic = False
- opset=11
- print('####begin to export to onnx')
-
- torch.onnx.export(seg_model, im,onnxFile, opset_version=opset,
- training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
- do_constant_folding=not train,
- input_names=['images'],
- output_names=['output'],
- #dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
- # 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
- # } if dynamic else None
- dynamic_axes={
- 'images': {0: 'batch_size', 2: 'in_width', 3: 'int_height'},
- 'output': {0: 'batch_size', 2: 'out_width', 3: 'out_height'}} if dynamic else None
-
- )
- '''
- input_name='images'
- output_name='output'
- torch.onnx.export(seg_model,
- im,
- onnxFile,
- opset_version=11,
- input_names=[input_name],
- output_names=[output_name],
- dynamic_axes={
- input_name: {0: 'batch_size', 2: 'in_width', 3: 'int_height'},
- output_name: {0: 'batch_size', 2: 'out_width', 3: 'out_height'}}
- )
-
- '''
-
-
- print('output onnx file:',onnxFile)
- def ONNXtoTrt(onnxFile,trtFile):
- import tensorrt as trt
- #onnx = Path('../weights/BiSeNet/checkpoint.onnx')
- #onnxFile = Path('../weights/STDC/model_maxmIOU75_1720_0.946_360640.onnx')
- time0=time.time()
- half=True;verbose=True;workspace=4;prefix=colorstr('TensorRT:')
- #f = onnx.with_suffix('.engine') # TensorRT engine file
- f=trtFile
- logger = trt.Logger(trt.Logger.INFO)
- if verbose:
- logger.min_severity = trt.Logger.Severity.VERBOSE
-
- builder = trt.Builder(logger)
- config = builder.create_builder_config()
- config.max_workspace_size = workspace * 1 << 30
-
- flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
- network = builder.create_network(flag)
- parser = trt.OnnxParser(network, logger)
- if not parser.parse_from_file(str(onnxFile)):
- raise RuntimeError(f'failed to load ONNX file: {onnx}')
-
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
- print(f'{prefix} Network Description:')
- for inp in inputs:
- print(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
- for out in outputs:
- print(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
-
- half &= builder.platform_has_fast_fp16
- print(f'{prefix} building FP{16 if half else 32} engine in {f}')
- if half:
- config.set_flag(trt.BuilderFlag.FP16)
- with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
- t.write(engine.serialize())
- print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- time1=time.time()
- print('output trtfile from ONNX, time:%.4f s ,'%(time1-time0),trtFile)
- def ONNX_eval(par):
-
-
- model_path = par['weights'];
- modelSize=par['modelSize']
- mean = par['mean']
- std = par['std']
- image_urls=glob.glob('%s/*'%(par['image_dir'] ))
- out_dir = par['out_dir']
-
- # 验证模型合法性
- onnx_model = onnx.load(model_path)
- onnx.checker.check_model(onnx_model)
-
- # 设置模型session以及输入信息
- sess = ort.InferenceSession(str(model_path),providers= ort.get_available_providers())
- print('len():',len( sess.get_inputs() ))
- input_name1 = sess.get_inputs()[0].name
-
-
- half = False;device = 'cuda:0'
- os.makedirs(out_dir,exist_ok=True)
-
- for im,image_url in enumerate(image_urls[0:1]):
- image_array0 = cv2.imread(image_url)
- #img=segPreProcess_image(image_array0).to(device)
- img=segPreProcess_image(image_array0,modelSize=modelSize,mean=mean,std=std,numpy=True,RGB_convert_first=par['RGB_convert_first'])
- #img = cv2.resize(img,(512,512)).transpose(2,0,1)
- img = np.array(img)[np.newaxis, :, :, :].astype(np.float32)
- H,W,C = image_array0.shape
- time_1=time.time()
- #pred,outstr = segmodel.eval(image_array0 )
- print('###line343:',img.shape, os.path.basename(image_url))
- print('###line343:img[0,0,10:12,10:12] ',img[0,0,10:12,10:12])
- output = sess.run(None, {input_name1: img})
- pred =output[0]
-
- #pred = pred.data.cpu().numpy()
- pred = np.argmax(pred, axis=1)[0]#得到每行
- pred = cv2.resize(pred.astype(np.uint8),(W,H))
- print('###line362:',np.max(pred))
- outstr='###---###'
-
- binary0 = pred.copy()
-
-
- time0 = time.time()
- contours, hierarchy = cv2.findContours(binary0,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
- max_id = -1
-
- time1 = time.time()
-
-
- time2 = time.time()
-
- #cv2.drawContours(image_array0,contours,max_id,(0,255,255),3)
- cv2.drawContours(image_array0,contours,-1,(0,255,255),3)
- time3 = time.time()
- out_url='%s/%s'%(out_dir,os.path.basename(image_url))
- ret = cv2.imwrite(out_url,image_array0)
- ret = cv2.imwrite(out_url.replace('.jpg','_mask.jpg').replace('.png','_mask.png' ),(pred*50).astype(np.uint8))
- time4 = time.time()
-
- print('image:%d,%s ,%d*%d,eval:%.1f ms, %s,findcontours:%.1f ms,draw:%.1f total:%.1f'%(im,os.path.basename(image_url),H,W,get_ms(time0,time_1),outstr,get_ms(time1,time0), get_ms(time3,time2),get_ms(time3,time_1)) )
- print('outimage:',out_url)
-
-
- #print(output)
-
- class SegModel_STDC_trt(object):
- def __init__(self,weights=None,modelsize=512,std=(0.229, 0.224, 0.225),mean=(0.485, 0.456, 0.406),device='cuda:0'):
-
- logger = trt.Logger(trt.Logger.INFO)
- with open(weights, "rb") as f, trt.Runtime(logger) as runtime:
- engine=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象
- self.model = TRTModule(engine, ["images"], ["output"])
- self.mean = mean
- self.std = std
- self.device = device
- self.modelsize = modelsize
-
-
- def eval(self,image):
- time0=time.time()
- H,W,C=image.shape
- img_input=self.segPreProcess_image(image)
- time1=time.time()
- pred=self.model(img_input)
- time2=time.time()
- pred=torch.argmax(pred,dim=1).cpu().numpy()[0]
- #pred = np.argmax(pred.cpu().numpy(), axis=1)[0]#得到每行
- time3 = time.time()
- pred = cv2.resize(pred.astype(np.uint8),(W,H))
- time4 = time.time()
- outstr= 'pre-precess:%.1f ,infer:%.1f ,post-cpu-argmax:%.1f ,post-resize:%.1f, total:%.1f \n '%( self.get_ms(time1,time0),self.get_ms(time2,time1),self.get_ms(time3,time2),self.get_ms(time4,time3),self.get_ms(time4,time0) )
-
- return pred,outstr
- def segPreProcess_image(self,image):
-
- image = cv2.resize(image,self.modelsize)
- image = cv2.cvtColor( image,cv2.COLOR_RGB2BGR)
-
- image = image.astype(np.float32)
- image /= 255.0
- image[:,:,0] -=self.mean[0]
- image[:,:,1] -=self.mean[1]
- image[:,:,2] -=self.mean[2]
-
- image[:,:,0] /= self.std[0]
- image[:,:,1] /= self.std[1]
- image[:,:,2] /= self.std[2]
- image = np.transpose(image, ( 2, 0, 1))
-
- image = torch.from_numpy(image).float()
- image = image.unsqueeze(0)
- return image.to(self.device)
- def get_ms(self,t1,t0):
- return (t1-t0)*1000.0
-
-
-
- def EngineInfer_onePic_thread(pars_thread):
-
- engine,image_array0,out_dir,image_url,im ,par= pars_thread[0:6]
- out_url='%s/%s'%(out_dir,os.path.basename(image_url))
-
- H,W,C = image_array0.shape
- time0=time.time()
-
- time1=time.time()
- # 运行模型
-
-
- #pred,segInfoStr=segtrtEval(engine,image_array0,par={'modelSize':(640,360),'mean':(0.485, 0.456, 0.406),'std' :(0.229, 0.224, 0.225),'numpy':False, 'RGB_convert_first':True})
- pred,segInfoStr=segtrtEval(engine,image_array0,par=par)
- cv2.imwrite(out_url.replace('.','_mask.'),(pred*50).astype(np.uint8))
-
- pred = 1 - pred
- time2=time.time()
-
- outstr='###---###'
- binary0 = pred.copy()
- time3 = time.time()
-
- contours, hierarchy = cv2.findContours(binary0,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
- max_id = -1
- #if len(contours)>0:
- # max_id = get_largest_contours(contours)
- # binary0[:,:] = 0
- # cv2.fillPoly(binary0, [contours[max_id][:,0,:]], 1)
- time4 = time.time()
-
- cv2.drawContours(image_array0,contours,max_id,(0,255,255),3)
- time5 = time.time()
-
- ret = cv2.imwrite(out_url,image_array0)
- time6 = time.time()
-
- print('image:%d,%s ,%d*%d, %s,,findcontours:%.1f ms,draw:%.1f total:%.1f'%(im,os.path.basename(image_url),H,W,segInfoStr, get_ms(time4,time3),get_ms(time5,time4),get_ms(time5,time0) ))
-
-
- return 'success'
-
-
- def EngineInfer(par):
-
- modelSize=par['modelSize'];mean = par['mean'] ;std = par['std'] ;RGB_convert_first=par['RGB_convert_first'];device=par['device']
- weights=par['weights']; image_dir=par['image_dir']
- max_threads=par['max_threads'];par['numpy']=False
- image_urls=glob.glob('%s/*'%(image_dir))
- out_dir =par['out_dir']
-
- os.makedirs(out_dir,exist_ok=True)
-
- #trt_model = SegModel_STDC_trt(weights=weights,modelsize=modelSize,std=std,mean=mean,device=device)
- logger = trt.Logger(trt.Logger.ERROR)
- with open(weights, "rb") as f, trt.Runtime(logger) as runtime:
- engine=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象
- print('#####load TRT file:',weights,'success #####')
-
- pars_thread=[]
- pars_threads=[]
- for im,image_url in enumerate(image_urls[0:]):
- image_array0 = cv2.imread(image_url)
- pars_thread=[engine,image_array0,out_dir,image_url,im,par]
- pars_threads.append(pars_thread)
- #EngineInfer_onePic_thread(pars_thread)
- t1=time.time()
- if max_threads==1:
- for i in range(len(pars_threads[0:])):
- EngineInfer_onePic_thread(pars_threads[i])
-
- '''
- pred,segInfoStr=segtrtEval(pars_threads[i][0],pars_threads[i][1],par)
- bname=os.path.basename( pars_threads[i][3] )
- outurl= os.path.join( out_dir , bname.replace( '.png','_mask.png').replace('.jpg','._mask.jpg') )
- ret=cv2.imwrite( outurl,(pred*50).astype(np.uint8))
- print(ret,outurl)'''
-
- else:
- with ThreadPoolExecutor(max_workers=max_threads) as t:
- for result in t.map(EngineInfer_onePic_thread, pars_threads):
- tt=result
-
- t2=time.time()
- print('All %d images time:%.1f ms, each:%.1f ms , with %d threads'%(len(image_urls),(t2-t1)*1000, (t2-t1)*1000.0/len(image_urls), max_threads) )
-
-
-
- if __name__=='__main__':
-
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='stdc_360X640.pth', help='model path(s)')
- parser.add_argument('--nclass', type=int, default=2, help='segmodel nclass')
- parser.add_argument('--mWidth', type=int, default=640, help='segmodel mWdith')
- parser.add_argument('--mHeight', type=int, default=360, help='segmodel mHeight')
- opt = parser.parse_args()
- print( opt.weights )
- #pthFile = Path('../../../yolov5TRT/weights/river/stdc_360X640.pth')
- pthFile = Path(opt.weights)
- onnxFile = str(pthFile.with_suffix('.onnx')).replace('360X640', '%dX%d'%( opt.mWidth,opt.mHeight ))
- trtFile = onnxFile.replace('.onnx','.engine' )
-
- nclass = opt.nclass; device=torch.device('cuda:0');
-
- '''###BiSeNet
- weights = '../weights/BiSeNet/checkpoint.pth';;inputShape =(1, 3, 512,512)
- segmodel = SegModel_BiSeNet(nclass=nclass,weights=weights)
- seg_model=segmodel.model
- '''
-
- ##STDC net
- weights = pthFile
- inputShape =(1, 3, opt.mHeight,opt.mWidth)#(bs,channels,height,width)
- #inputShape =(1, 3, 360,640)#(bs,channels,height,width)
- segmodel = SegModel_STDC(nclass=nclass,weights=weights,modelSize=(inputShape[2],inputShape[3]));
-
-
- seg_model=segmodel.model
-
- par={'modelSize':(inputShape[3],inputShape[2]),'mean':(0.485, 0.456, 0.406),'std':(0.229, 0.224, 0.225),'RGB_convert_first':True,
- 'weights':trtFile,'device':device,'max_threads':1,'predResize':True,
- 'image_dir':'../../AIdemo2/images/trafficAccident/','out_dir' :'results'}
-
- par_onnx =deepcopy( par)
- par_onnx['weights']=onnxFile
- par_pth =deepcopy( par);par_pth['segmodel']=segmodel;
- #infer_usage(par_pth)
-
- #toONNX(seg_model,onnxFile,inputShape=inputShape,device=device,dynamic=True)
- ONNXtoTrt(onnxFile,trtFile)
-
- #EngineInfer(par)
-
-
- #ONNX_eval(par_onnx)
-
-
-
-
-
-
-
-
-
|