|
- import os,sys
- import torch
- import numpy as np
- sys.path.extend(['../AIlib2/obbUtils'])
- #import datasets.DOTA_devkit.ResultMerge_multi_process
- #from datasets.DOTA_devkit.ResultMerge_multi_process import py_cpu_nms_poly_fast, py_cpu_nms_poly
- from dotadevkit.ops.ResultMerge import py_cpu_nms_poly_fast, py_cpu_nms_poly
- import time
-
- # def decode_prediction(predictions, dsets, args, img_id, down_ratio):
- def decode_prediction(predictions, category, model_size, down_ratio,ori_image):
- t1=time.time()
- predictions = predictions[0, :, :]
-
- # ttt1=time.time()
- # # ori_image = dsets.load_image(dsets.img_ids.index(img_id)) #加载了原图第2次????这里耗时 改1
- # ttt2 = time.time()
- # print(f'jiazaitupian. ({(1E3 * (ttt2 - ttt1)):.1f}ms) ')
- h, w, c = ori_image.shape
-
- pts0 = {cat: [] for cat in category}
- scores0 = {cat: [] for cat in category}
- for pred in predictions:
- cen_pt = np.asarray([pred[0], pred[1]], np.float32)
- tt = np.asarray([pred[2], pred[3]], np.float32)
- rr = np.asarray([pred[4], pred[5]], np.float32)
- bb = np.asarray([pred[6], pred[7]], np.float32)
- ll = np.asarray([pred[8], pred[9]], np.float32)
- tl = tt + ll - cen_pt
- bl = bb + ll - cen_pt
- tr = tt + rr - cen_pt
- br = bb + rr - cen_pt
- score = pred[10]
- clse = pred[11]
- pts = np.asarray([tr, br, bl, tl], np.float32)
- pts[:, 0] = pts[:, 0] * down_ratio / model_size[0] * w
- pts[:, 1] = pts[:, 1] * down_ratio / model_size[1] * h
- pts0[category[int(clse)]].append(pts)
- scores0[category[int(clse)]].append(score)
- t2=time.time()
- #print('###line40:decode_prediction time: %.1f ',(t2-t1)*1000.0)
- return pts0, scores0
-
-
- def non_maximum_suppression(pts, scores):
- nms_item = np.concatenate([pts[:, 0:1, 0],
- pts[:, 0:1, 1],
- pts[:, 1:2, 0],
- pts[:, 1:2, 1],
- pts[:, 2:3, 0],
- pts[:, 2:3, 1],
- pts[:, 3:4, 0],
- pts[:, 3:4, 1],
- scores[:, np.newaxis]], axis=1)
- nms_item = np.asarray(nms_item, np.float64)
- keep_index = py_cpu_nms_poly_fast(dets=nms_item, thresh=0.1)
- return nms_item[keep_index]
-
-
- def write_results(args,
- model,
- dsets,
- down_ratio,
- device,
- decoder,
- result_path,
- print_ps=False):
- results = {cat: {img_id: [] for img_id in dsets.img_ids} for cat in dsets.category}
- for index in range(len(dsets)):
- data_dict = dsets.__getitem__(index)
- image = data_dict['image'].to(device)
- img_id = data_dict['img_id']
- image_w = data_dict['image_w']
- image_h = data_dict['image_h']
-
- with torch.no_grad():
- pr_decs = model(image)
-
-
- decoded_pts = []
- decoded_scores = []
- torch.cuda.synchronize(device)
- predictions = decoder.ctdet_decode(pr_decs)
- pts0, scores0 = decode_prediction(predictions, dsets, args, img_id, down_ratio)
- decoded_pts.append(pts0)
- decoded_scores.append(scores0)
-
- # nms
- for cat in dsets.category:
- if cat == 'background':
- continue
- pts_cat = []
- scores_cat = []
- for pts0, scores0 in zip(decoded_pts, decoded_scores):
- pts_cat.extend(pts0[cat])
- scores_cat.extend(scores0[cat])
- pts_cat = np.asarray(pts_cat, np.float32)
- scores_cat = np.asarray(scores_cat, np.float32)
- if pts_cat.shape[0]:
- nms_results = non_maximum_suppression(pts_cat, scores_cat)
- results[cat][img_id].extend(nms_results)
- if print_ps:
- print('testing {}/{} data {}'.format(index+1, len(dsets), img_id))
-
- for cat in dsets.category:
- if cat == 'background':
- continue
- with open(os.path.join(result_path, 'Task1_{}.txt'.format(cat)), 'w') as f:
- for img_id in results[cat]:
- for pt in results[cat][img_id]:
- f.write('{} {:.12f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.format(
- img_id, pt[8], pt[0], pt[1], pt[2], pt[3], pt[4], pt[5], pt[6], pt[7]))
|