您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

200 行
7.6KB

  1. import tensorrt as trt
  2. import sys,os
  3. import cv2,glob,time
  4. import torch
  5. import utils
  6. import numpy as np
  7. from ocrUtils2.ocrUtils import strLabelConverter , OcrTrtForward,np_resize_keepRation
  8. class ocrModel(object):
  9. def __init__(self, weights=None,
  10. par={
  11. #'cfg':'../AIlib2/weights/conf/OCR_Ch/360CC_config.yaml',
  12. 'char_file':'../AIlib2/weights/conf/OCR_Ch/Ch.txt',
  13. 'mode':'ch',
  14. 'nc':3,
  15. 'imgH':32,
  16. 'imgW':256,
  17. 'hidden':256,
  18. 'mean':[0.5,0.5,0.5],
  19. 'std':[0.5,0.5,0.5],
  20. 'dynamic':False,
  21. }
  22. ):
  23. self.par = par
  24. self.device = 'cuda:0'
  25. self.half =True
  26. self.dynamic = par['dynamic']
  27. self.par['modelSize'] = (par['imgW'], par['imgH'])
  28. with open(par['char_file'], 'r') as fp:
  29. alphabet = fp.read()
  30. #self.converter = utils.strLabelConverter(alphabet)
  31. self.converter = strLabelConverter(alphabet)
  32. self.nclass = len(alphabet) + 1
  33. if weights.endswith('.engine'):
  34. self.infer_type ='trt'
  35. elif weights.endswith('.pth') or weights.endswith('.pt') :
  36. self.infer_type ='pth'
  37. else:
  38. print('#########ERROR:',weights,': no registered inference type, exit')
  39. sys.exit(0)
  40. if self.infer_type=='trt':
  41. logger = trt.Logger(trt.Logger.ERROR)
  42. with open(weights, "rb") as f, trt.Runtime(logger) as runtime:
  43. self.model=runtime.deserialize_cuda_engine(f.read())# 输入trt本地文件,返回ICudaEngine对象
  44. self.context = self.model.create_execution_context()
  45. elif self.infer_type=='pth':
  46. if par['mode']=='ch':
  47. import ocrUtils2.crnnCh as crnn
  48. self.model = crnn.CRNN(par['nc'], par['hidden'], self.nclass, par['imgH'])
  49. else:
  50. import ocrUtils2.crnn_model as crnn
  51. self.model = crnn.CRNN(par['imgH'], par['nc'], self.nclass,par['hidden'] )
  52. self.load_model_weights(weights)
  53. self.model = self.model.to(self.device)
  54. print('#######load pt model:%s success '%(weights))
  55. self.par['modelType']=self.infer_type
  56. print('#########加载模型:',weights,' 类型:',self.infer_type)
  57. def eval(self,image):
  58. t0 = time.time()
  59. image = self.preprocess_image(image)
  60. t1 = time.time()
  61. if self.infer_type=='pth':
  62. self.model.eval()
  63. preds = self.model(image)
  64. else:
  65. preds,trtstr=OcrTrtForward(self.model,[image],False)
  66. #preds,trtstr=OcrTrtForward(self.model,[image], self.context )
  67. t2 = time.time()
  68. preds_size = torch.IntTensor([preds.size(0)]*1)
  69. _, preds = preds.max(2)
  70. preds = preds.transpose(1, 0).contiguous().view(-1)
  71. res_real = self.converter.decode(preds, preds_size, raw=False)
  72. t3 = time.time()
  73. timeInfos = 'total:%.1f (preProcess:%.1f ,inference:%.1f, postProcess:%.1f) '%( self.get_ms(t3,t0), self.get_ms(t1,t0), self.get_ms(t2,t1), self.get_ms(t3,t2), )
  74. return res_real,timeInfos
  75. def preprocess_image(self,image):
  76. if self.par['nc']==1:
  77. image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  78. else: image = image[:,:,::-1] #bgr-->rgb
  79. if self.dynamic:
  80. H,W = image.shape[0:2]
  81. image = cv2.resize(image, (0, 0), fx=self.par['modelSize'][1] / H, fy=self.par['modelSize'][1] / H, interpolation=cv2.INTER_CUBIC)
  82. else:
  83. re_size = self.par['modelSize']
  84. image = cv2.resize(image,re_size, interpolation=cv2.INTER_LINEAR)
  85. if self.infer_type=='trt':
  86. image = np_resize_keepRation(image,self.par['modelSize'][1] ,self.par['modelSize'][0] )
  87. image = image.astype(np.float32)
  88. image /= 255.0
  89. #print('####line105:',image.shape)
  90. if self.par['nc']==1:
  91. image = (image-self.par['mean'][0])/self.par['std'][0]
  92. image = np.expand_dims(image,0)
  93. else:
  94. image[:, :, 0] -= self.par['mean'][0]
  95. image[:, :, 1] -= self.par['mean'][1]
  96. image[:, :, 2] -= self.par['mean'][2]
  97. image[:, :, 0] /= self.par['std'][0]
  98. image[:, :, 1] /= self.par['std'][1]
  99. image[:, :, 2] /= self.par['std'][2]
  100. image = np.transpose(image, (2, 0, 1))
  101. image = torch.from_numpy(image).float()
  102. image = image.unsqueeze(0)
  103. if self.device != 'cpu':
  104. image = image.to(self.device)
  105. return image
  106. def get_ms(self,t1,t0):
  107. return (t1-t0)*1000.0
  108. def load_model_weights(self,weight):
  109. checkpoint = torch.load(weight)
  110. if 'state_dict' in checkpoint.keys():
  111. self.model.load_state_dict(checkpoint['state_dict'])
  112. else:
  113. try:
  114. self.model.load_state_dict(checkpoint)
  115. except:
  116. ##修正模型参数的名字
  117. state_dict = torch.load(weight)
  118. # create new OrderedDict that does not contain `module.`
  119. from collections import OrderedDict
  120. new_state_dict = OrderedDict()
  121. for k, v in state_dict.items():
  122. name = k[7:] # remove `module.`
  123. new_state_dict[name] = v
  124. # load params
  125. self.model.load_state_dict(new_state_dict)
  126. if __name__== "__main__":
  127. #weights = '/home/thsw2/WJ/src/OCR/benchmarking-chinese-text-recognition/weights/scene_base.pth'
  128. weights = '/mnt/thsw2/DSP2/weights/ocr2/crnn_ch_2080Ti_fp16_192X32.engine'
  129. par={
  130. #'cfg':'../AIlib2/weights/conf/OCR_Ch/360CC_config.yaml',
  131. 'char_file':'/home/thsw2/WJ/src/OCR/benchmarking-chinese-text-recognition/src/models/CRNN/data/benchmark.txt',
  132. 'mode':'ch',
  133. 'nc':3,
  134. 'imgH':32,
  135. 'imgW':192,
  136. 'hidden':256,
  137. 'mean':[0.5,0.5,0.5],
  138. 'std':[0.5,0.5,0.5],
  139. 'dynamic':False
  140. }
  141. inputDir = '/home/thsw2/WJ/src/OCR/shipNames'
  142. '''
  143. weights = '/home/thsw2/WJ/src/DSP2/AIlib2/weights/conf/ocr2/crnn_448X32.pth'
  144. #weights = '/mnt/thsw2/DSP2/weights/ocr2/crnn_en_2080Ti_fp16_448X32.engine'
  145. par={
  146. #'cfg':'../AIlib2/weights/conf/OCR_Ch/360CC_config.yaml',
  147. 'char_file':'/home/thsw2/WJ/src/DSP2/AIlib2/weights/conf/ocr2/chars2.txt',
  148. 'mode':'en',
  149. 'nc':1,
  150. 'imgH':32,
  151. 'imgW':448,
  152. 'hidden':256,
  153. 'mean':[0.588,0.588,0.588],
  154. 'std':[0.193,0.193,0.193 ],
  155. 'dynamic':True
  156. }
  157. inputDir='/home/thsw2/WJ/src/DSP2/AIdemo2/images/ocr_en'
  158. '''
  159. model = ocrModel(weights=weights,par=par )
  160. imgUrls = glob.glob('%s/*.jpg'%(inputDir))
  161. for imgUrl in imgUrls[0:]:
  162. img = cv2.imread(imgUrl)
  163. res_real,timeInfos = model.eval(img)
  164. res_real="".join( list(filter(lambda x:(ord(x) >19968 and ord(x)<63865 ) or (ord(x) >47 and ord(x)<58 ),res_real)))
  165. print(res_real,os.path.basename(imgUrl),timeInfos )