|
- import torch
- import torch.nn.functional as F
- from torch import nn
- import os,sys
-
- #print( os.path.abspath( os.path.dirname(os.path.dirname(__file__) )) )
- sys.path.append(os.path.abspath( os.path.dirname(os.path.dirname(__file__) )) )
- from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
- accuracy, get_world_size, interpolate,
- is_dist_avail_and_initialized)
-
- from .backbone import build_backbone
- from .matcher import build_matcher_crowd
-
- import numpy as np
- import time
-
-
- # the network frmawork of the regression branch
- class RegressionModel(nn.Module):
- def __init__(self, num_features_in, num_anchor_points=4, feature_size=256):
- super(RegressionModel, self).__init__()
-
- self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
- self.act1 = nn.ReLU()
-
- self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
- self.act2 = nn.ReLU()
-
- self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
- self.act3 = nn.ReLU()
-
- self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
- self.act4 = nn.ReLU()
-
- self.output = nn.Conv2d(feature_size, num_anchor_points * 2, kernel_size=3, padding=1)
-
- # sub-branch forward
- def forward(self, x):
- out = self.conv1(x)
- out = self.act1(out)
-
- out = self.conv2(out)
- out = self.act2(out)
-
- out = self.output(out)
-
- out = out.permute(0, 2, 3, 1)
-
- return out.contiguous().view(out.shape[0], -1, 2)
-
-
- # the network frmawork of the classification branch
- class ClassificationModel(nn.Module):
- def __init__(self, num_features_in, num_anchor_points=4, num_classes=80, prior=0.01, feature_size=256):
- super(ClassificationModel, self).__init__()
-
- self.num_classes = num_classes
- self.num_anchor_points = num_anchor_points
-
- self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
- self.act1 = nn.ReLU()
-
- self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
- self.act2 = nn.ReLU()
-
- self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
- self.act3 = nn.ReLU()
-
- self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
- self.act4 = nn.ReLU()
-
- self.output = nn.Conv2d(feature_size, num_anchor_points * num_classes, kernel_size=3, padding=1)
- self.output_act = nn.Sigmoid()
-
- # sub-branch forward
- def forward(self, x):
- out = self.conv1(x)
- out = self.act1(out)
-
- out = self.conv2(out)
- out = self.act2(out)
-
- out = self.output(out)
-
- out1 = out.permute(0, 2, 3, 1)
-
- batch_size, width, height, _ = out1.shape
-
- out2 = out1.view(batch_size, width, height, self.num_anchor_points, self.num_classes)
-
- return out2.contiguous().view(x.shape[0], -1, self.num_classes)
-
-
- # generate the reference points in grid layout
- def generate_anchor_points(stride=16, row=3, line=3):
- row_step = stride / row
- line_step = stride / line
-
- shift_x = (np.arange(1, line + 1) - 0.5) * line_step - stride / 2
- shift_y = (np.arange(1, row + 1) - 0.5) * row_step - stride / 2
-
- shift_x, shift_y = np.meshgrid(shift_x, shift_y)
-
- anchor_points = np.vstack((
- shift_x.ravel(), shift_y.ravel()
- )).transpose()
-
- return anchor_points
-
-
- # shift the meta-anchor to get an acnhor points
- def shift(shape, stride, anchor_points):
- shift_x = (np.arange(0, shape[1]) + 0.5) * stride
- shift_y = (np.arange(0, shape[0]) + 0.5) * stride
-
- shift_x, shift_y = np.meshgrid(shift_x, shift_y)
-
- shifts = np.vstack((
- shift_x.ravel(), shift_y.ravel()
- )).transpose()
-
- A = anchor_points.shape[0]
- K = shifts.shape[0]
- all_anchor_points = (anchor_points.reshape((1, A, 2)) + shifts.reshape((1, K, 2)).transpose((1, 0, 2)))
- all_anchor_points = all_anchor_points.reshape((K * A, 2))
-
- return all_anchor_points
-
-
-
-
- # this class generate all reference points on all pyramid levels
- class AnchorPoints(nn.Module):
- def __init__(self, pyramid_levels=None, strides=None, row=3, line=3):
- super(AnchorPoints, self).__init__()
-
- if pyramid_levels is None:
- self.pyramid_levels = [3, 4, 5, 6, 7]
- else:
- self.pyramid_levels = pyramid_levels
-
- if strides is None:
- self.strides = [2 ** x for x in self.pyramid_levels]
-
- self.row = row
- self.line = line
-
- def forward(self, image):
- image_shape = image.shape[2:]
- image_shape = np.array(image_shape)
- image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]
-
- all_anchor_points = np.zeros((0, 2)).astype(np.float32)
- # get reference points for each level
- for idx, p in enumerate(self.pyramid_levels):
- anchor_points = generate_anchor_points(2**p, row=self.row, line=self.line)
- shifted_anchor_points = shift(image_shapes[idx], self.strides[idx], anchor_points)
- all_anchor_points = np.append(all_anchor_points, shifted_anchor_points, axis=0)
-
- all_anchor_points = np.expand_dims(all_anchor_points, axis=0)
- # send reference points to device
- if torch.cuda.is_available():
- return torch.from_numpy(all_anchor_points.astype(np.float32)).cuda()
- else:
- return torch.from_numpy(all_anchor_points.astype(np.float32))
-
-
- class Decoder(nn.Module):
- def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
- super(Decoder, self).__init__()
-
- # upsample C5 to get P5 from the FPN paper
- self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
- self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
- self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
-
- # add P5 elementwise to C4
- self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
- self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
- self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
-
- # add P4 elementwise to C3
- self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
- self.P3_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
- self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
-
- def forward(self, inputs):
- C3, C4, C5 = inputs
-
- P5_x = self.P5_1(C5)
- P5_upsampled_x = self.P5_upsampled(P5_x)
- P5_x = self.P5_2(P5_x)
-
- P4_x = self.P4_1(C4)
- P4_x = P5_upsampled_x + P4_x
- P4_upsampled_x = self.P4_upsampled(P4_x)
- P4_x = self.P4_2(P4_x)
-
- P3_x = self.P3_1(C3)
- P3_x = P3_x + P4_upsampled_x
- P3_x = self.P3_2(P3_x)
-
- return [P3_x, P4_x, P5_x]
-
-
- # the defenition of the P2PNet model
- class P2PNet(nn.Module):
- def __init__(self, backbone, row=2, line=2,anchorFlag=True):
- super().__init__()
- self.backbone = backbone
- self.num_classes = 2
- self.anchorFlag = anchorFlag
- # the number of all anchor points
- num_anchor_points = row * line
-
- self.regression = RegressionModel(num_features_in=256, num_anchor_points=num_anchor_points)
- self.classification = ClassificationModel(num_features_in=256, \
- num_classes=self.num_classes, \
- num_anchor_points=num_anchor_points)
- if self.anchorFlag:
- self.anchor_points = AnchorPoints(pyramid_levels=[3,], row=row, line=line)
-
- self.fpn = Decoder(256, 512, 512)
-
- def forward(self, samples: NestedTensor):
- # get the backbone features
- features = self.backbone(samples)
- # forward the feature pyramid
- features_fpn = self.fpn([features[1], features[2], features[3]])
-
- batch_size = features[0].shape[0]
- # print("line227", batch_size)
- # run the regression and classification branch
- regression = self.regression(features_fpn[1]) * 100 # 8x
- classification = self.classification(features_fpn[1])
-
- if self.anchorFlag:
- anchor_points = self.anchor_points(samples).repeat(batch_size, 1, 1)
- #decode the points as prediction
- output_coord = regression + anchor_points
- else:
- output_coord = regression
- output_class = classification
- out = {'pred_logits': output_class, 'pred_points': output_coord}
-
- return out
-
-
- class SetCriterion_Crowd(nn.Module):
-
- def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
- """ Create the criterion.
- Parameters:
- num_classes: number of object categories, omitting the special no-object category
- matcher: module able to compute a matching between targets and proposals
- weight_dict: dict containing as key the names of the losses and as values their relative weight.
- eos_coef: relative classification weight applied to the no-object category
- losses: list of all the losses to be applied. See get_loss for list of available losses.
- """
- super().__init__()
- self.num_classes = num_classes
- self.matcher = matcher
- self.weight_dict = weight_dict
- self.eos_coef = eos_coef
- self.losses = losses
- empty_weight = torch.ones(self.num_classes + 1)
- empty_weight[0] = self.eos_coef
- self.register_buffer('empty_weight', empty_weight)
-
- def loss_labels(self, outputs, targets, indices, num_points):
- """Classification loss (NLL)
- targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
- """
- assert 'pred_logits' in outputs
- src_logits = outputs['pred_logits']
-
- idx = self._get_src_permutation_idx(indices)
- target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
- target_classes = torch.full(src_logits.shape[:2], 0,
- dtype=torch.int64, device=src_logits.device)
- target_classes[idx] = target_classes_o
-
- loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
- losses = {'loss_ce': loss_ce}
-
- return losses
-
- def loss_points(self, outputs, targets, indices, num_points):
-
- assert 'pred_points' in outputs
- idx = self._get_src_permutation_idx(indices)
- src_points = outputs['pred_points'][idx]
- target_points = torch.cat([t['point'][i] for t, (_, i) in zip(targets, indices)], dim=0)
-
- loss_bbox = F.mse_loss(src_points, target_points, reduction='none')
-
- losses = {}
- losses['loss_point'] = loss_bbox.sum() / num_points
-
- return losses
-
- def _get_src_permutation_idx(self, indices):
- # permute predictions following indices
- batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
- src_idx = torch.cat([src for (src, _) in indices])
- return batch_idx, src_idx
-
- def _get_tgt_permutation_idx(self, indices):
- # permute targets following indices
- batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
- tgt_idx = torch.cat([tgt for (_, tgt) in indices])
- return batch_idx, tgt_idx
-
- def get_loss(self, loss, outputs, targets, indices, num_points, **kwargs):
- loss_map = {
- 'labels': self.loss_labels,
- 'points': self.loss_points,
- }
- assert loss in loss_map, f'do you really want to compute {loss} loss?'
- return loss_map[loss](outputs, targets, indices, num_points, **kwargs)
-
- def forward(self, outputs, targets):
- """ This performs the loss computation.
- Parameters:
- outputs: dict of tensors, see the output specification of the model for the format
- targets: list of dicts, such that len(targets) == batch_size.
- The expected keys in each dict depends on the losses applied, see each loss' doc
- """
- output1 = {'pred_logits': outputs['pred_logits'], 'pred_points': outputs['pred_points']}
-
- indices1 = self.matcher(output1, targets)
-
- num_points = sum(len(t["labels"]) for t in targets)
- num_points = torch.as_tensor([num_points], dtype=torch.float, device=next(iter(output1.values())).device)
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_points)
- num_boxes = torch.clamp(num_points / get_world_size(), min=1).item()
-
- losses = {}
- for loss in self.losses:
- losses.update(self.get_loss(loss, output1, targets, indices1, num_boxes))
-
- return losses
-
-
- # create the P2PNet model
- def build(args, training):
- # treats persons as a single class
- num_classes = 1
-
- backbone = build_backbone(args)
- model = P2PNet(backbone, args.row, args.line,anchorFlag=args.anchorFlag)
- if not training:
- return model
-
- weight_dict = {'loss_ce': 1, 'loss_points': args.point_loss_coef}
- losses = ['labels', 'points']
- matcher = build_matcher_crowd(args)
- criterion = SetCriterion_Crowd(num_classes, \
- matcher=matcher, weight_dict=weight_dict, \
- eos_coef=args.eos_coef, losses=losses)
-
- return model, criterion
|