|
- import numpy as np
- import time,ast,copy
- from flask import request, Flask,jsonify
- import base64,cv2,os,sys,json
- sys.path.extend(['../yolov5'])
- #from Send_tranfer import b64encode_function,JsonSend,name_dic,nameID_dic,getLogFileFp
- from segutils.segmodel import SegModel,get_largest_contours
- from models.experimental import attempt_load
- from utils.datasets import LoadStreams, LoadImages
- from utils.torch_utils import select_device, load_classifier, time_synchronized
- from queRiver import get_labelnames,get_label_arrays,post_process_,save_problem_images,time_str
- import subprocess as sp
- import matplotlib.pyplot as plt
- import torch,random,string
- import multiprocessing
- from multiprocessing import Process,Queue
- import traceback
- from kafka import KafkaProducer, KafkaConsumer,TopicPartition
- from kafka.errors import kafka_errors
-
- #torch.multiprocessing.set_start_method('spawn')
- import utilsK
- from utilsK.GPUtils import *
- from utilsK.masterUtils import *
- from utilsK.sendUtils import create_status_msg,update_json
-
- #from utilsK.modelEval import onlineModelProcess
- import random,string
- from Send_tranfer_oss import msg_dict_on,msg_dict_off
-
- process_id=0
-
- def onlineModelProcess(parIn ):
- DEBUG=False
- streamName = parIn['streamName']
- childCallback=parIn['callback']
- #try:
- for wan in ['test']:
- jsonfile=parIn['modelJson']
- with open(jsonfile,'r') as fp:
- parAll = json.load(fp)
-
- Detweights=parAll['gpu_process']['det_weights']
- seg_nclass = parAll['gpu_process']['seg_nclass']
- Segweights = parAll['gpu_process']['seg_weights']
- videoSave = parAll['AI_video_save']
- imageTxtFile = parAll['imageTxtFile']
-
-
- inSource,outSource=parIn['inSource'],parIn['outSource']
-
- kafka_par=parIn['kafka_par']
- producer = KafkaProducer(bootstrap_servers=kafka_par['server'],value_serializer=lambda v: v.encode('utf-8'),metadata_max_age_ms=120000)
-
-
-
- device = select_device(parIn['device'])
- half = device.type != 'cpu' # half precision only supported on CUDA
- model = attempt_load(Detweights, map_location=device) # load FP32 model
- if half: model.half()
-
- #print('###line116:,',len(dataset),dataset)
- if (inSource.endswith('.MP4')) or (inSource.endswith('.mp4')):
- fps,outW,outH,totalcnt=get_fps_rtmp(inSource,video=True)[0:4]
- else:
- fps,outW,outH,totalcnt=get_fps_rtmp(inSource,video=False)[0:4]
- fps = int(fps+0.5)
-
-
- segmodel = SegModel(nclass=seg_nclass,weights=Segweights,device=device)
-
- if outSource != 'NO':
- command=['ffmpeg','-y','-f', 'rawvideo','-vcodec','rawvideo','-pix_fmt', 'bgr24',
- '-s', "{}x{}".format(outW,outH),# 图片分辨率
- '-r', str(fps),# 视频帧率
- '-i', '-','-c:v', 'libx264','-pix_fmt', 'yuv420p',
- '-f', 'flv',outSource
- ]
- video_flag = videoSave['onLine']
- logdir = parAll['logChildProcessOnline']
- #print('*'*20,'###line82',command)
- else:
- video_flag = videoSave['offLine'] ;logdir = parAll['logChildProcessOffline']
-
- fp_log=create_logFile(logdir=logdir)
- # 管道配置,其中用到管道
- if outSource !='NO' :
- ppipe = sp.Popen(command, stdin=sp.PIPE)
-
-
- ##后处理参数
- par=parAll['post_process']
- conf_thres,iou_thres,classes=par['conf_thres'],par['iou_thres'],par['classes']
- outImaDir = par['outImaDir']
- outVideoDir = par['outVideoDir']
- labelnames=par['labelnames']
- rainbows=par['rainbows']
- fpsample = par['fpsample']
- names=get_labelnames(labelnames)
- label_arraylist = get_label_arrays(names,rainbows,outfontsize=40)
-
- dataset = LoadStreams(inSource, img_size=640, stride=32)
-
-
- childCallback.send('####model load success####')
- if (outVideoDir!='NO') and video_flag:
- msg_id = streamName.split('-')[2]
- save_path = os.path.join(outVideoDir,msg_id+'.MP4')
- vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (outW,outH))
-
- iframe = 0;post_results=[];time_beg=time.time()
-
- t00=time.time()
- time_kafka0=time.time()
- for path, img, im0s, vid_cap in dataset:
-
- t0= time_synchronized()
- if not path:
- EndUrl='%s/%s_frame-9999-9999_type-结束_9999999999999999_s-%s_AI.jpg'%(outImaDir,time_str(),streamName)
- EndUrl = EndUrl.replace(' ','-').replace(':','-')
- img_end=np.zeros((100,100),dtype=np.uint8);cv2.imwrite(EndUrl,img_end)
- if imageTxtFile:
- EndUrl_txt = EndUrl.replace('.jpg','.txt')
- fp_t=open(EndUrl_txt,'w');fp_t.write(EndUrl+'\n');fp_t.close()
-
- EndUrl='%s/%s_frame-9999-9999_type-结束_9999999999999999_s-%s_OR.jpg'%(outImaDir,time_str(),streamName)
- EndUrl = EndUrl.replace(' ','-').replace(':','-')
- ret = cv2.imwrite(EndUrl,img_end)
- if imageTxtFile:
- EndUrl_txt = EndUrl.replace('.jpg','.txt')
- fp_t=open(EndUrl_txt,'w');fp_t.write(EndUrl+'\n');fp_t.close()
-
- #print(EndUrl,ret)
- childCallback.send('####strem ends####')
- if (outVideoDir!='NO') and video_flag:
- vid_writer.release()
- break###断流或者到终点
-
- if outSource == 'NO':###如果不推流,则显示进度条
- view_bar(iframe,totalcnt,time_beg ,parIn['process_uid'] )
-
- ###直播和离线都是1分钟发一次消息。直播发
- time_kafka1 = time.time()
- if time_kafka1 - time_kafka0 >60:
- time_kafka0 = time_kafka1
- ###发送状态信息waiting
- msg = copy.deepcopy(msg_dict_off);taskId,msgId = streamName.split('-')[1:3]
- msg['msg_id']= msgId; msg
- if outSource == 'NO':
- msg['progressbar']= '%.4f'%(iframe*1.0/totalcnt)
- msg['type']=1
- else:
- msg['progressbarOn']= str(iframe)
- msg['type']=2
-
- msg = json.dumps(msg, ensure_ascii=False)
-
- try:
- record_metadata = producer.send(kafka_par['topic'], msg).get()
- outstr='%s processing send progressbar or heartBeat to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg);
- wrtiteLog(fp_log,outstr);print( outstr);
- except Exception as e:
- outstr='#######kafka ERROR when processing sending progressbar or heartBeat:, error: %s'%(str(e))
- wrtiteLog(fp_log,outstr);print( outstr);
- try:
- producer = KafkaProducer(bootstrap_servers=par['server'], value_serializer=lambda v: v.encode('utf-8')).get()
- future = producer.send(par['topic'][2], msg).get()
- except Exception as e:
- outstr='%s re-send progressbar or heartBeat kafka,processing video or stream: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg);
- wrtiteLog(fp_log,outstr);print( outstr);
-
-
- time0=time.time()
- iframe +=1
- time1=time.time()
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
-
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
-
- timeseg0 = time.time()
- seg_pred,segstr = segmodel.eval(im0s[0] )
- timeseg1 = time.time()
-
- t1= time_synchronized()
- pred = model(img,augment=False)[0]
- time4 = time.time()
- datas = [path, img, im0s, vid_cap,pred,seg_pred,iframe]
-
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,iframe)
- t2= time_synchronized()
-
- #print('###line138:',timeOut,outSource,outVideoDir)
- ##每隔 fpsample帧处理一次,如果有问题就保存图片
- if (iframe % fpsample == 0) and (len(post_results)>0) :
- parImage=save_problem_images(post_results,iframe,names,streamName=streamName,outImaDir='problems/images_tmp',imageTxtFile=imageTxtFile)
- post_results=[]
-
- if len(p_result[2] )>0: ##
- post_results.append(p_result)
- t3= time_synchronized()
- image_array = p_result[1]
- if outSource!='NO':
- ppipe.stdin.write(image_array.tobytes())
-
- if (outVideoDir!='NO') and video_flag:
- ret = vid_writer.write(image_array)
- t4= time_synchronized()
-
- timestr2 = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
- if iframe%100==0:
- outstr='%s,,read:%.1f ms,copy:%.1f, infer:%.1f ms, detinfer:%.1f ms,draw:%.1f ms, save:%.1f ms total:%.1f ms \n'%(timestr2,(t0 - t00)*1000,(timeseg0-t0)*1000, (t1 - timeseg0)*1000,(t2-t1)*1000, (t3 - t2)*1000,(t4-t3)*1000, (t4-t00)*1000)
- wrtiteLog(fp_log,outstr);
- #print(outstr)
- t00 = t4;
-
-
-
-
-
- ##模型加载之类的错误
- #except Exception as e:
-
- # print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) ,'*'*20,'###line177 ERROR:',e)
- # childCallback.send(e) #将异常通过管道送出
-
-
- def lauch_process(gpuid,inSource,outSource,taskId,msgId,modelJson,kafka_par):
-
- if outSource=='NO':
- streamName='off-%s-%s'%(taskId,msgId)
- else:
- streamName='live-%s-%s'%(taskId,msgId)
- dataPar ={
- 'imgData':'',
- 'imgName':'testW',
- 'streamName':streamName,
- 'taskId':taskId,
- 'msgId':msgId,
- 'device':str(gpuid),
- 'modelJson':modelJson,
- 'kafka_par':kafka_par,
- }
- #dataPar['inSource'] = 'http://images.5gai.taauav.com/video/8bc32984dd893930dabb2856eb92b4d1.mp4';dataPar['outSource'] = None
- dataPar['inSource'] = inSource;dataPar['outSource'] = outSource
- process_uid=''.join(random.sample(string.ascii_letters + string.digits, 16));dataPar['process_uid']=process_uid
- parent_conn, child_conn = multiprocessing.Pipe();dataPar['callback']=child_conn
- gpuProcess=Process(target=onlineModelProcess,name='process:%s'%( process_uid ),args=(dataPar,))
- gpuProcess.start()
- #print(dir(gpuProcess))
- child_return = parent_conn.recv()
- timestr2=time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime())
- print(timestr2,'-'*20,'progress:%s ,msgId:%s , taskId:%s return:'%(process_uid,msgId,taskId),child_return)
-
- return gpuProcess
-
-
- msg_dict_offline = {
-
- "biz_id":"hehuzhang",
- "mod_id":"ai",
- "msg_id":'bb'+''.join(random.sample(string.ascii_letters ,30) ) ,
- "offering_id":"http://vod.play.t-aaron.com/customerTrans/c49a2c620795d124f2ae4b10197b8d0e/303b7a58-17f3ef4494e-0004-f90c-f2c-7ec68.mp4",
- "offering_type":"mp4",
- "results_base_dir": "XJRW202203171535"+str(random.randint(10,99)),
-
- 'outSource':'NO'
-
-
- }
-
-
-
- def detector_0(par):
- ####初始化信息列表
- consumer = KafkaConsumer(
- bootstrap_servers=par['server'],
- group_id=par['group_id'],
- auto_offset_reset='earliest',
- #max_poll_interval_ms = 1000*60*6,
-
- #session_timeout_ms=1000*60*5,
- request_timeout_ms=15000,
- #enable_auto_commit=True
- )
- consumer.subscribe( par['topic'][0:2])
- kafka_par ={ 'server':par['server'],'topic':par['topic'][2] }
- producer = KafkaProducer(
- bootstrap_servers=par['server'],#tencent yun
- value_serializer=lambda v: v.encode('utf-8'),
- metadata_max_age_ms=120000)
-
- taskStatus={}
- taskStatus['onLine'] = Queue(100)
- taskStatus['offLine']= Queue(100)
- taskStatus['pidInfos']= {}
-
- fp_log=create_logFile(logdir=par['logDir'])
- wrtiteLog(fp_log,'###########masster starts in line222######\n')
-
- timeSleep=1
-
- #taskStatus['pidInfos'][31897]={'gpuProcess':'onlineProcess','type':'onLine'}
-
-
- time0=time.time()
- time0_kafQuery=time.time()
- time0_taskQuery=time.time()
- time0_sleep=time.time()
- time_interval=10; outStrList={}
-
- isleep=0
- while True:###每隔timeSleep秒,轮询一次
- #for isleep in range(1):
-
- ##1-读取kafka,更新任务类别
- try:
- #msgs = getAllRecords(consumer,par['topic'])
- msgs=[]
- for ii,msg in enumerate(consumer):
- consumer.commit()
- msgs.append(msg)
-
- except Exception as e:
- outstr='%s kafka connecting error:%s '%('#'*20,e)
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
- time.sleep(timeSleep)
- continue
- #if get_whether_gpuProcess():
-
-
- for it in range(30):
- timestr=time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime())
- print('%s i=%d sleep:%s '%(timestr,isleep,it*10))
- time.sleep(10)
- isleep+=1
- print('########Program End#####')
-
- def detector(par):
- ####初始化信息列表
- consumer = KafkaConsumer(
- bootstrap_servers=par['server'],
- group_id=par['group_id'],
- auto_offset_reset='earliest',
- #max_poll_interval_ms = 1000*60*6,
-
- #session_timeout_ms=1000*60*5,
- #request_timeout_ms=11000,
- #enable_auto_commit=True
- )
- consumer.subscribe( par['topic'][0:2])
- kafka_par ={ 'server':par['server'],'topic':par['topic'][2] }
- producer = KafkaProducer(
- bootstrap_servers=par['server'],#tencent yun
- value_serializer=lambda v: v.encode('utf-8'),
- metadata_max_age_ms=120000)
-
- taskStatus={}
- taskStatus['onLine'] = Queue(100)
- taskStatus['offLine']= Queue(100)
- taskStatus['pidInfos']= {}
-
-
- timeSleep=1
-
- #taskStatus['pidInfos'][31897]={'gpuProcess':'onlineProcess','type':'onLine'}
-
-
- time0=time.time()
- time0_kafQuery=time.time()
- time0_taskQuery=time.time()
- time0_sleep=time.time()
- time_interval=10; outStrList={}
-
- isleep=0
-
- for ii,msg in enumerate(consumer):
- try:
- taskInfos = eval(msg.value.decode('utf-8') )
- except:
- outstr='%s msg format error,value:%s,offset:%d partition:%s topic:%s'%('#'*20,msg.value,msg.offset,msg.topic,msg.topic)
- continue
- outstr='%s value:%s,offset:%d partition:%s topic:%s'%('#'*20,msg.value,msg.offset,msg.partition,msg.topic)
- print(outstr)
- def get_file():
- print("文件名 :",__file__,sys._getframe().f_lineno)
- print("函数名: ", sys._getframe().f_code.co_name)
- print("模块名: ", sys._getframe().f_back.f_code.co_name)
-
-
- if __name__ == '__main__':
- par={};
- ###topic0--在线,topic1--离线
-
- #par['server']='212.129.223.66:9092';par['topic']=('thsw','thsw2','testReturn');par['group_id']='test';
- #101.132.127.1:19092
-
- '''
- par['server']='101.132.127.1:19092 ';par['topic']=('alg-online-tasks','alg-offline-tasks','alg-task-results');par['group_id']='test';
-
- par['kafka']='mintors/kafka'
- par['modelJson']='conf/model.json'
- '''
- masterFile="conf/master_ten.json"
- assert os.path.exists(masterFile)
- with open(masterFile,'r') as fp:
- data=json.load(fp)
- get_file()
-
-
- par=data['par']
- print(par)
- detector(par)
-
-
-
-
-
-
|