|
- import numpy as np
- import time,ast,copy
- from flask import request, Flask,jsonify
- import base64,cv2,os,sys,json
- sys.path.extend(['../yolov5'])
- #from Send_tranfer import b64encode_function,JsonSend,name_dic,nameID_dic,getLogFileFp
- from segutils.segmodel import SegModel,get_largest_contours
- from models.experimental import attempt_load
- from utils.datasets import LoadStreams, LoadImages
- from utils.torch_utils import select_device, load_classifier, time_synchronized
- from queRiver import get_labelnames,get_label_arrays,post_process_,save_problem_images,time_str
- import subprocess as sp
- import matplotlib.pyplot as plt
- import torch,random,string
- import multiprocessing
- from multiprocessing import Process,Queue
- import traceback
- from kafka import KafkaProducer, KafkaConsumer,TopicPartition
- from kafka.errors import kafka_errors
-
- #torch.multiprocessing.set_start_method('spawn')
- import utilsK
- from utilsK.GPUtils import *
- from utilsK.masterUtils import *
- from utilsK.sendUtils import create_status_msg,update_json
-
- #from utilsK.modelEval import onlineModelProcess
- import random,string
- from Send_tranfer_oss import msg_dict_on,msg_dict_off
- import pykafka
- from pykafka import KafkaClient
- process_id=0
-
- def onlineModelProcess(parIn ):
- DEBUG=False
- streamName = parIn['streamName']
- childCallback=parIn['callback']
- outStrList={}
- #try:
- for wan in ['test']:
- jsonfile=parIn['modelJson']
- with open(jsonfile,'r') as fp:
- parAll = json.load(fp)
-
- Detweights=parAll['gpu_process']['det_weights']
- seg_nclass = parAll['gpu_process']['seg_nclass']
- Segweights = parAll['gpu_process']['seg_weights']
- videoSave = parAll['AI_video_save']
- imageTxtFile = parAll['imageTxtFile']
- taskId,msgId = streamName.split('-')[1:3]
-
- inSource,outSource=parIn['inSource'],parIn['outSource']
-
- ##构建日志文件
- if outSource != 'NO':
- logdir = parAll['logChildProcessOnline']
- waitingTime=parAll['StreamWaitingTime']
- else:
- logdir = parAll['logChildProcessOffline']
- waitingTime=5
-
- fp_log=create_logFile(logdir=logdir)
- kafka_par=parIn['kafka_par']
- producer = KafkaProducer(bootstrap_servers=kafka_par['server'],value_serializer=lambda v: v.encode('utf-8'),metadata_max_age_ms=120000)
-
- ####要先检查视频的有效性
- ###开始的时候,如果在线任务没有流,要发送的心跳消息,msg_h,
- msg_h= copy.deepcopy(msg_dict_off);
- msg_h['status']='waiting';msg_h['msg_id']=msgId
-
-
- if outSource == 'NO':
- msg_h['type']=1
- Stream_ok= get_fps_rtmp(inSource,video=True)
- else:
- msg_h['type']=2
-
- msg_h_d = json.dumps(msg_h, ensure_ascii=False)
- outStrList['success']= '%s waiting stream or video, send heartbeat: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg_h);
- outStrList['failure']='#######kafka ERROR waiting stream or video, send heartbeat'
- outStrList['Refailure']='##############kafka ERROR waiting stream or video, Re-send heartbeat'
- Stream_ok=check_stream(inSource,producer,kafka_par,msg_h_d,outStrList,fp_log ,timeMs=waitingTime)
-
- if Stream_ok:###发送开始信号
- msg_h['status']='running'
- msg_h_d = json.dumps(msg_h, ensure_ascii=False)
-
- outStrList['success']= '%s informing stream/video is ok, taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg_h);
- outStrList['failure']='#######kafka ERROR ,when informing stream/video is ok'
- outStrList['Refailure']='##############kafka ERROR, when re-informing stream/video is ok'
-
- send_kafka(producer,kafka_par,msg_h_d,outStrList,fp_log );
-
- else:
- ####检测离线视频是否有效,无效要报错
- outstr='############# offline vedio or live stream Error:%s #################'%(inSource)
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
-
- msg_h['error']=str(1001);msg_h['status']='failed';
- msg_h_d = json.dumps(msg_h, ensure_ascii=False);
- outStrList['success']= '%s informing invaid video or stream success : taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg_h);
- outStrList['failure']='#######kafka ERROR, when informing invaid video or stream'
- outStrList['Refailure']='##############kafka ERROR,when re-informing invaid video or stream'
- send_kafka(producer,kafka_par,msg_h_d,outStrList,fp_log );
- childCallback.send(' offline vedio or live stream Error')
- continue
-
-
-
- if (inSource.endswith('.MP4')) or (inSource.endswith('.mp4')):
- fps,outW,outH,totalcnt=get_fps_rtmp(inSource,video=True)[0:4]
- else:
- fps,outW,outH,totalcnt=get_fps_rtmp(inSource,video=False)[0:4]
- fps = int(fps+0.5)
- if outSource != 'NO':
- command=['ffmpeg','-y','-f', 'rawvideo','-vcodec','rawvideo','-pix_fmt', 'bgr24',
- '-s', "{}x{}".format(outW,outH),# 图片分辨率
- '-r', str(fps),# 视频帧率
- '-i', '-','-c:v', 'libx264','-pix_fmt', 'yuv420p',
- '-f', 'flv',outSource
- ]
- video_flag = videoSave['onLine']
- logdir = parAll['logChildProcessOnline']
- waitingTime=parAll['StreamWaitingTime']
- else:
- video_flag = videoSave['offLine'] ;logdir = parAll['logChildProcessOffline']
- waitingTime=5
-
- fp_log=create_logFile(logdir=logdir)
-
-
- device = select_device(parIn['device'])
- half = device.type != 'cpu' # half precision only supported on CUDA
- model = attempt_load(Detweights, map_location=device) # load FP32 model
- if half: model.half()
-
-
- segmodel = SegModel(nclass=seg_nclass,weights=Segweights,device=device)
-
-
-
- # 管道配置,其中用到管道
- if outSource !='NO' :
- ppipe = sp.Popen(command, stdin=sp.PIPE)
-
-
- ##后处理参数
- par=parAll['post_process']
- conf_thres,iou_thres,classes=par['conf_thres'],par['iou_thres'],par['classes']
- outImaDir = par['outImaDir']
- outVideoDir = par['outVideoDir']
- labelnames=par['labelnames']
- rainbows=par['rainbows']
- fpsample = par['fpsample']
- names=get_labelnames(labelnames)
- label_arraylist = get_label_arrays(names,rainbows,outfontsize=40)
-
- dataset = LoadStreams(inSource, img_size=640, stride=32)
-
-
- childCallback.send('####model load success####')
- if (outVideoDir!='NO') and video_flag:
- msg_id = streamName.split('-')[2]
- save_path = os.path.join(outVideoDir,msg_id+'.MP4')
- vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (outW,outH))
-
- iframe = 0;post_results=[];time_beg=time.time()
-
- t00=time.time()
- time_kafka0=time.time()
- for path, img, im0s, vid_cap in dataset:
-
- t0= time_synchronized()
- if not path:
- EndUrl='%s/%s_frame-9999-9999_type-结束_9999999999999999_s-%s_AI.jpg'%(outImaDir,time_str(),streamName)
- EndUrl = EndUrl.replace(' ','-').replace(':','-')
- img_end=np.zeros((100,100),dtype=np.uint8);cv2.imwrite(EndUrl,img_end)
- if imageTxtFile:
- EndUrl_txt = EndUrl.replace('.jpg','.txt')
- fp_t=open(EndUrl_txt,'w');fp_t.write(EndUrl+'\n');fp_t.close()
-
- EndUrl='%s/%s_frame-9999-9999_type-结束_9999999999999999_s-%s_OR.jpg'%(outImaDir,time_str(),streamName)
- EndUrl = EndUrl.replace(' ','-').replace(':','-')
- ret = cv2.imwrite(EndUrl,img_end)
- if imageTxtFile:
- EndUrl_txt = EndUrl.replace('.jpg','.txt')
- fp_t=open(EndUrl_txt,'w');fp_t.write(EndUrl+'\n');fp_t.close()
-
- #print(EndUrl,ret)
- childCallback.send('####strem ends####')
- if (outVideoDir!='NO') and video_flag:
- vid_writer.release()
- break###断流或者到终点
-
- if outSource == 'NO':###如果不推流,则显示进度条
- view_bar(iframe,totalcnt,time_beg ,parIn['process_uid'] )
-
- ###直播和离线都是1分钟发一次消息。直播发
- time_kafka1 = time.time()
- if time_kafka1 - time_kafka0 >60:
- time_kafka0 = time_kafka1
- ###发送状态信息waiting
- msg = copy.deepcopy(msg_dict_off);
- msg['msg_id']= msgId; msg
- if outSource == 'NO':
- msg['progressbar']= '%.4f'%(iframe*1.0/totalcnt)
- msg['type']=1
- else:
- msg['progressbarOn']= str(iframe)
- msg['type']=2
-
- msg = json.dumps(msg, ensure_ascii=False)
- '''
- try:
- record_metadata = producer.send(kafka_par['topic'], msg).get()
- outstr='%s processing send progressbar or heartBeat to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg);
- wrtiteLog(fp_log,outstr);print( outstr);
- except Exception as e:
- outstr='#######kafka ERROR when processing sending progressbar or heartBeat:, error: %s'%(str(e))
- wrtiteLog(fp_log,outstr);print( outstr);
- try:
- producer = KafkaProducer(bootstrap_servers=par['server'], value_serializer=lambda v: v.encode('utf-8')).get()
- future = producer.send(par['topic'][2], msg).get()
- except Exception as e:
- outstr='%s re-send progressbar or heartBeat kafka,processing video or stream: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg);
- wrtiteLog(fp_log,outstr);print( outstr);
- '''
-
-
- ###发送状态信息waiting
- outStrList['success']= '%s processing send progressbar or heartBeat to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg);
- outStrList['failure']='#######kafka ERROR when processing sending progressbar or heartBeat'
- outStrList['Refailure']='%s re-send progressbar or heartBeat kafka,processing video or stream: taskId:%s msgId:%s send:%s'%('-'*20,taskId, msgId,msg);
- send_kafka(producer,kafka_par,msg,outStrList,fp_log );
-
-
-
- time0=time.time()
- iframe +=1
- time1=time.time()
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
-
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
-
- timeseg0 = time.time()
- seg_pred,segstr = segmodel.eval(im0s[0] )
- timeseg1 = time.time()
-
- t1= time_synchronized()
- pred = model(img,augment=False)[0]
- time4 = time.time()
- datas = [path, img, im0s, vid_cap,pred,seg_pred,iframe]
-
- p_result,timeOut = post_process_(datas,conf_thres, iou_thres,names,label_arraylist,rainbows,iframe)
- t2= time_synchronized()
-
- #print('###line138:',timeOut,outSource,outVideoDir)
- ##每隔 fpsample帧处理一次,如果有问题就保存图片
- if (iframe % fpsample == 0) and (len(post_results)>0) :
- parImage=save_problem_images(post_results,iframe,names,streamName=streamName,outImaDir='problems/images_tmp',imageTxtFile=imageTxtFile)
- post_results=[]
-
- if len(p_result[2] )>0: ##
- post_results.append(p_result)
- t3= time_synchronized()
- image_array = p_result[1]
- if outSource!='NO':
- ppipe.stdin.write(image_array.tobytes())
-
- if (outVideoDir!='NO') and video_flag:
- ret = vid_writer.write(image_array)
- t4= time_synchronized()
-
- timestr2 = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
- if iframe%100==0:
- outstr='%s,,read:%.1f ms,copy:%.1f, infer:%.1f ms, detinfer:%.1f ms,draw:%.1f ms, save:%.1f ms total:%.1f ms \n'%(timestr2,(t0 - t00)*1000,(timeseg0-t0)*1000, (t1 - timeseg0)*1000,(t2-t1)*1000, (t3 - t2)*1000,(t4-t3)*1000, (t4-t00)*1000)
- wrtiteLog(fp_log,outstr);
- #print(outstr)
- t00 = t4;
-
-
-
-
-
- ##模型加载之类的错误
- #except Exception as e:
-
- # print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) ,'*'*20,'###line177 ERROR:',e)
- # childCallback.send(e) #将异常通过管道送出
-
-
- def lauch_process(gpuid,inSource,outSource,taskId,msgId,modelJson,kafka_par):
-
- if outSource=='NO':
- streamName='off-%s-%s'%(taskId,msgId)
- else:
- streamName='live-%s-%s'%(taskId,msgId)
- dataPar ={
- 'imgData':'',
- 'imgName':'testW',
- 'streamName':streamName,
- 'taskId':taskId,
- 'msgId':msgId,
- 'device':str(gpuid),
- 'modelJson':modelJson,
- 'kafka_par':kafka_par,
- }
- #dataPar['inSource'] = 'http://images.5gai.taauav.com/video/8bc32984dd893930dabb2856eb92b4d1.mp4';dataPar['outSource'] = None
- dataPar['inSource'] = inSource;dataPar['outSource'] = outSource
- process_uid=''.join(random.sample(string.ascii_letters + string.digits, 16));dataPar['process_uid']=process_uid
- parent_conn, child_conn = multiprocessing.Pipe();dataPar['callback']=child_conn
- gpuProcess=Process(target=onlineModelProcess,name='process:%s'%( process_uid ),args=(dataPar,))
- gpuProcess.start()
- #print(dir(gpuProcess))
- #child_return = parent_conn.recv()
- #timestr2=time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime())
- #print(timestr2,'-'*20,'progress:%s ,msgId:%s , taskId:%s return:'%(process_uid,msgId,taskId),child_return)
-
- return gpuProcess
-
-
- msg_dict_offline = {
-
- "biz_id":"hehuzhang",
- "mod_id":"ai",
- "msg_id":'bb'+''.join(random.sample(string.ascii_letters ,30) ) ,
- "offering_id":"http://vod.play.t-aaron.com/customerTrans/c49a2c620795d124f2ae4b10197b8d0e/303b7a58-17f3ef4494e-0004-f90c-f2c-7ec68.mp4",
- "offering_type":"mp4",
- "results_base_dir": "XJRW202203171535"+str(random.randint(10,99)),
-
- 'outSource':'NO'
-
-
- }
-
-
-
- def detector(par):
- ####初始化信息列表
- consumer = KafkaConsumer(bootstrap_servers=par['server'],client_id='AI_server',group_id=par['group_id'],auto_offset_reset='earliest')
-
-
- consumer.subscribe( par['topic'][0:2])
- '''
- client = KafkaClient(hosts=par['server'])
- consumer_pys=[]
- for topic_name in par['topic'][0:2]:
- consumer_pys.append(client.topics[ topic_name ].get_simple_consumer(consumer_group=par['group_id'],timeout=30))
-
- '''
-
- kafka_par ={ 'server':par['server'],'topic':par['topic'][2] }
- producer = KafkaProducer(
- bootstrap_servers=par['server'],#tencent yun
- value_serializer=lambda v: v.encode('utf-8'),
- metadata_max_age_ms=120000)
-
- taskStatus={}
- taskStatus['onLine'] = Queue(100)
- taskStatus['offLine']= Queue(100)
- taskStatus['pidInfos']= {}
-
- fp_log=create_logFile(logdir=par['logDir'])
- wrtiteLog(fp_log,'###########masster starts in line222######\n')
-
- timeSleep=1
-
- #taskStatus['pidInfos'][31897]={'gpuProcess':'onlineProcess','type':'onLine'}
-
-
- time0=time.time()
- time0_kafQuery=time.time()
- time0_taskQuery=time.time()
- time0_sleep=time.time()
- time_interval=10; outStrList={}
- while True:###每隔timeSleep秒,轮询一次
- #for isleep in range(1):
- '''
- ##1-读取kafka,更新任务类别
- try:
-
- msgs = getAllRecords(consumer,par['topic'])
- except Exception as e:
- outstr='%s kafka connecting error:%s '%('#'*20,e)
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
- time.sleep(timeSleep)
- continue
- #if get_whether_gpuProcess():
-
- time0_kafQuery,printFlag = check_time_interval(time0_kafQuery,time_interval)
- if printFlag:
- outstr_kafka=' ##### kafka Left %d records####'%(len(msgs));
- outstr_kafka=wrtiteLog(fp_log,outstr_kafka)
-
- '''
-
- for ii,msg in enumerate(consumer):
- #for ii,msg in enumerate(msgs):
- ##读取消息
- try:
-
- taskInfos = eval(msg.value.decode('utf-8') )
-
- except:
-
- outstr='%s msg format error,value:%s,offset:%d partition:%s topic:%s'%('#'*20,msg.value,msg.offset,msg.topic,msg.topic)
- continue
-
- if msg.topic == par['topic'][0]: ##
-
- taskInfos['inSource']= taskInfos['pull_channel'];
- taskInfos['outSource']= get_push_address(taskInfos['push_channel']) ;
-
- taskStatus['onLine'].put( taskInfos )
- save_message(par['kafka'],taskInfos)
-
- ###发送状态信息waiting
- msg = create_status_msg(msg_dict_on,taskInfos,sts='waiting')
- outStrList['success']= '%s read from kafka online task and back to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskInfos['results_base_dir'], taskInfos['msg_id'],msg)
- outStrList['failure']='#######kafka ERROR when read from kafka online task and back to kafka'
- outStrList['Refailure']='##############kafka ERROR when read from kafka online task and resend back to kafka:'
- send_kafka(producer,kafka_par,msg,outStrList,fp_log );
-
- else:
-
- taskInfos['inSource']= taskInfos['offering_id'];
- taskInfos['outSource']= 'NO'
-
- taskStatus['offLine'].put( taskInfos )
- save_message(par['kafka'],taskInfos)
-
- ###发送状态信息waiting
- msg = create_status_msg(msg_dict_off,taskInfos,sts='waiting')
-
-
- outStrList['success']= '%s read from kafka offline task and back to kafka: taskId:%s msgId:%s send:%s'%('-'*20,taskInfos['results_base_dir'], taskInfos['msg_id'],msg)
- outStrList['failure']='#######kkafka ERROR when read from kafka offline task and back to kafka:,'
- outStrList['Refailure']='##############kafka ERROR when read from kafka offline task and resend back to kafka:'
- send_kafka(producer,kafka_par,msg,outStrList,fp_log );
-
-
-
- time0_taskQuery,printFlag = check_time_interval(time0_taskQuery,time_interval)
- outstr_task= ' task queue onLine cnt:%d offLine:%d'%(taskStatus['onLine'].qsize(), taskStatus['offLine'].qsize())
-
- ##2-更新显卡信息
- gpuStatus = getGPUInfos()
-
- ##3-优先考虑在线任务
- if not taskStatus['onLine'].empty():
- ###3.1-先判断有没有空闲显卡:
- cuda = get_available_gpu(gpuStatus)
- ###获取在线任务信息,并执行,lauch process
- taskInfos = taskStatus['onLine'].get()
-
- print('################396',cuda)
- if cuda: ###3.1.1 -有空余显卡
- #lauch process
-
- msg= copy.deepcopy(msg_dict_on);
-
- gpuProcess=lauch_process(cuda,taskInfos['inSource'],taskInfos['outSource'],taskInfos['results_base_dir'],taskInfos['msg_id'],par['modelJson'],kafka_par)
-
- taskStatus['pidInfos'][gpuProcess.pid] = {'gpuProcess':gpuProcess,'type':'onLine','taskInfos':taskInfos}
-
-
- else:###3.1.2-没有显卡
- ##判断有没有显卡上面都是离线进程的
- cuda_pid = get_potential_gpu(gpuStatus,taskStatus['pidInfos'])
-
- if cuda_pid:#3.1.2.1 - ##如果有可以杀死的进程
- cuda = cuda_pid['cuda']
- pids = cuda_pid['pids']
- ##kill 离线进程,并更新离线任务表
- cnt_off_0 = taskStatus['offLine'].qsize()
- for pid in pids:
- ##kill 离线进程
- taskStatus['pidInfos'][pid]['gpuProcess'].kill()
- ##更新离线任务表
- taskStatus['offLine'].put( taskStatus['pidInfos'][pid]['taskInfos'] )
- taskInfos_off=taskStatus['pidInfos'][pid]['taskInfos']
-
- ##发送离线数据,说明状态变成waiting
- msg= msg_dict_off;
- msg=update_json(taskInfos_off,msg,offkeys=["msg_id","biz_id" ,"mod_id"] )
- msg['results'][0]['original_url']=taskInfos_off['inSource']
- msg['results'][0]['sign_url']=get_boradcast_address(taskInfos_off['outSource'])
- msg['status']='waiting'
- msg = json.dumps(msg, ensure_ascii=False)
-
- outStrList['success']= '%s start online task after kill offline tasks and back to kafka: pid:%d taskId:%s msgId:%s send:%s'%('-'*20,gpuProcess.pid,taskInfos_off['results_base_dir'], taskInfos_off['msg_id'],msg)
- outStrList['failure']='#######kafka ERROR when start online task after kill offline tasks and back to kafka'
- outStrList['Refailure']='##############kkafka ERROR when start online task after kill offline tasks and back to kafka'
- send_kafka(producer,kafka_par,msg,outStrList,fp_log );
-
-
- cnt_off_1 = taskStatus['offLine'].qsize()
- outstr='%s before killing process, offtask cnt:%d ,after killing, offtask cnt:%d %s'%('-'*20 ,cnt_off_0,cnt_off_1,'*'*20)
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
- gpuProcess=lauch_process(cuda,taskInfos['inSource'],taskInfos['outSource'],taskInfos['results_base_dir'],taskInfos['msg_id'],par['modelJson'],kafka_par)
-
-
- ###更新pidinfos,update pidInfos
- taskStatus['pidInfos'][gpuProcess.pid] = {'gpuProcess':gpuProcess,'type':'onLine','taskInfos':taskInfos}
-
-
-
- else:
- outstr='######No available GPUs for onLine####'
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
- ##4-更新显卡信息
- gpuStatus = getGPUInfos()
- ##5-考虑离线任务
- if not taskStatus['offLine'].empty():
- cudaArrange= arrange_offlineProcess(gpuStatus,taskStatus['pidInfos'],modelMemory=1500)
- outstr='###line342 IN OFF LINE TASKS available cudas:%s'%(cudaArrange)
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
- for cuda in cudaArrange:
- if not taskStatus['offLine'].empty():
- taskInfos = taskStatus['offLine'].get()
-
-
-
- gpuProcess=lauch_process(cuda,taskInfos['inSource'],taskInfos['outSource'],taskInfos['results_base_dir'],taskInfos['msg_id'],par['modelJson'],kafka_par)
- taskStatus['pidInfos'][gpuProcess.pid] = {'gpuProcess':gpuProcess,'type':'offLine','taskInfos':taskInfos}
-
-
-
-
- if get_whether_gpuProcess():
- time0_sleep,printFlag = check_time_interval(time0_sleep,time_interval)
- if printFlag:
- timestr2=time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime())
- outstr= timestr2 + '*'*20 +'sleep '+'*'*20;
- outstr=wrtiteLog(fp_log,outstr);print( outstr);
- outstr_task=wrtiteLog(fp_log,outstr_task);print( outstr_task);
-
- time.sleep(timeSleep)
- print('########sleep 1s #####')
- print('########Program End#####')
-
-
-
- if __name__ == '__main__':
- par={};
- ###topic0--在线,topic1--离线
-
- #par['server']='212.129.223.66:9092';par['topic']=('thsw','thsw2','testReturn');par['group_id']='test';
- #101.132.127.1:19092
-
- '''
- par['server']='101.132.127.1:19092 ';par['topic']=('alg-online-tasks','alg-offline-tasks','alg-task-results');par['group_id']='test';
-
- par['kafka']='mintors/kafka'
- par['modelJson']='conf/model.json'
- '''
- masterFile="conf/master.json"
- assert os.path.exists(masterFile)
- with open(masterFile,'r') as fp:
- data=json.load(fp)
- par=data['par']
- print(par)
- detector(par)
-
-
-
-
-
-
|