|
- """Custom losses."""
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- from torch.autograd import Variable
-
- __all__ = ['MixSoftmaxCrossEntropyLoss', 'MixSoftmaxCrossEntropyOHEMLoss',
- 'EncNetLoss', 'ICNetLoss', 'get_segmentation_loss']
-
-
- # TODO: optim function
- class MixSoftmaxCrossEntropyLoss(nn.CrossEntropyLoss):
- def __init__(self, aux=True, aux_weight=0.2, ignore_index=-1, **kwargs):
- super(MixSoftmaxCrossEntropyLoss, self).__init__(ignore_index=ignore_index)
- self.aux = aux
- self.aux_weight = aux_weight
-
- def _aux_forward(self, *inputs, **kwargs):
- *preds, target = tuple(inputs)
-
- loss = super(MixSoftmaxCrossEntropyLoss, self).forward(preds[0], target)
- for i in range(1, len(preds)):
- aux_loss = super(MixSoftmaxCrossEntropyLoss, self).forward(preds[i], target)
- loss += self.aux_weight * aux_loss
- return loss
-
- def forward(self, *inputs, **kwargs):
- preds, target = tuple(inputs)
- inputs = tuple(list(preds) + [target])
- if self.aux:
- return dict(loss=self._aux_forward(*inputs))
- else:
- return dict(loss=super(MixSoftmaxCrossEntropyLoss, self).forward(*inputs))
-
-
- # reference: https://github.com/zhanghang1989/PyTorch-Encoding/blob/master/encoding/nn/loss.py
- class EncNetLoss(nn.CrossEntropyLoss):
- """2D Cross Entropy Loss with SE Loss"""
-
- def __init__(self, se_loss=True, se_weight=0.2, nclass=19, aux=False,
- aux_weight=0.4, weight=None, ignore_index=-1, **kwargs):
- super(EncNetLoss, self).__init__(weight, None, ignore_index)
- self.se_loss = se_loss
- self.aux = aux
- self.nclass = nclass
- self.se_weight = se_weight
- self.aux_weight = aux_weight
- self.bceloss = nn.BCELoss(weight)
-
- def forward(self, *inputs):
- preds, target = tuple(inputs)
- inputs = tuple(list(preds) + [target])
- if not self.se_loss and not self.aux:
- return super(EncNetLoss, self).forward(*inputs)
- elif not self.se_loss:
- pred1, pred2, target = tuple(inputs)
- loss1 = super(EncNetLoss, self).forward(pred1, target)
- loss2 = super(EncNetLoss, self).forward(pred2, target)
- return dict(loss=loss1 + self.aux_weight * loss2)
- elif not self.aux:
- print (inputs)
- pred, se_pred, target = tuple(inputs)
- se_target = self._get_batch_label_vector(target, nclass=self.nclass).type_as(pred)
- loss1 = super(EncNetLoss, self).forward(pred, target)
- loss2 = self.bceloss(torch.sigmoid(se_pred), se_target)
- return dict(loss=loss1 + self.se_weight * loss2)
- else:
- pred1, se_pred, pred2, target = tuple(inputs)
- se_target = self._get_batch_label_vector(target, nclass=self.nclass).type_as(pred1)
- loss1 = super(EncNetLoss, self).forward(pred1, target)
- loss2 = super(EncNetLoss, self).forward(pred2, target)
- loss3 = self.bceloss(torch.sigmoid(se_pred), se_target)
- return dict(loss=loss1 + self.aux_weight * loss2 + self.se_weight * loss3)
-
- @staticmethod
- def _get_batch_label_vector(target, nclass):
- # target is a 3D Variable BxHxW, output is 2D BxnClass
- batch = target.size(0)
- tvect = Variable(torch.zeros(batch, nclass))
- for i in range(batch):
- hist = torch.histc(target[i].cpu().data.float(),
- bins=nclass, min=0,
- max=nclass - 1)
- vect = hist > 0
- tvect[i] = vect
- return tvect
-
-
- # TODO: optim function
- class ICNetLoss(nn.CrossEntropyLoss):
- """Cross Entropy Loss for ICNet"""
-
- def __init__(self, nclass, aux_weight=0.4, ignore_index=-1, **kwargs):
- super(ICNetLoss, self).__init__(ignore_index=ignore_index)
- self.nclass = nclass
- self.aux_weight = aux_weight
-
- def forward(self, *inputs):
- preds, target = tuple(inputs)
- inputs = tuple(list(preds) + [target])
-
- pred, pred_sub4, pred_sub8, pred_sub16, target = tuple(inputs)
- # [batch, W, H] -> [batch, 1, W, H]
- target = target.unsqueeze(1).float()
- target_sub4 = F.interpolate(target, pred_sub4.size()[2:], mode='bilinear', align_corners=True).squeeze(1).long()
- target_sub8 = F.interpolate(target, pred_sub8.size()[2:], mode='bilinear', align_corners=True).squeeze(1).long()
- target_sub16 = F.interpolate(target, pred_sub16.size()[2:], mode='bilinear', align_corners=True).squeeze(
- 1).long()
- loss1 = super(ICNetLoss, self).forward(pred_sub4, target_sub4)
- loss2 = super(ICNetLoss, self).forward(pred_sub8, target_sub8)
- loss3 = super(ICNetLoss, self).forward(pred_sub16, target_sub16)
- return dict(loss=loss1 + loss2 * self.aux_weight + loss3 * self.aux_weight)
-
-
- class OhemCrossEntropy2d(nn.Module):
- def __init__(self, ignore_index=-1, thresh=0.7, min_kept=100000, use_weight=True, **kwargs):
- super(OhemCrossEntropy2d, self).__init__()
- self.ignore_index = ignore_index
- self.thresh = float(thresh)
- self.min_kept = int(min_kept)
- if use_weight:
- weight = torch.FloatTensor([0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754,
- 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955,
- 1.0865, 1.1529, 1.0507])
- self.criterion = torch.nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index)
- else:
- self.criterion = torch.nn.CrossEntropyLoss(ignore_index=ignore_index)
-
- def forward(self, pred, target):
- n, c, h, w = pred.size()
- target = target.view(-1)
- valid_mask = target.ne(self.ignore_index)
- target = target * valid_mask.long()
- num_valid = valid_mask.sum()
-
- prob = F.softmax(pred, dim=1)
- prob = prob.transpose(0, 1).reshape(c, -1)
-
- if self.min_kept > num_valid:
- print("Lables: {}".format(num_valid))
- elif num_valid > 0:
- prob = prob.masked_fill_(1 - valid_mask, 1)
- mask_prob = prob[target, torch.arange(len(target), dtype=torch.long)]
- threshold = self.thresh
- if self.min_kept > 0:
- index = mask_prob.argsort()
- threshold_index = index[min(len(index), self.min_kept) - 1]
- if mask_prob[threshold_index] > self.thresh:
- threshold = mask_prob[threshold_index]
- kept_mask = mask_prob.le(threshold)
- valid_mask = valid_mask * kept_mask
- target = target * kept_mask.long()
-
- target = target.masked_fill_(1 - valid_mask, self.ignore_index)
- target = target.view(n, h, w)
-
- return self.criterion(pred, target)
-
-
- class MixSoftmaxCrossEntropyOHEMLoss(OhemCrossEntropy2d):
- def __init__(self, aux=False, aux_weight=0.4, weight=None, ignore_index=-1, **kwargs):
- super(MixSoftmaxCrossEntropyOHEMLoss, self).__init__(ignore_index=ignore_index)
- self.aux = aux
- self.aux_weight = aux_weight
- self.bceloss = nn.BCELoss(weight)
-
- def _aux_forward(self, *inputs, **kwargs):
- *preds, target = tuple(inputs)
-
- loss = super(MixSoftmaxCrossEntropyOHEMLoss, self).forward(preds[0], target)
- for i in range(1, len(preds)):
- aux_loss = super(MixSoftmaxCrossEntropyOHEMLoss, self).forward(preds[i], target)
- loss += self.aux_weight * aux_loss
- return loss
-
- def forward(self, *inputs):
- preds, target = tuple(inputs)
- inputs = tuple(list(preds) + [target])
- if self.aux:
- return dict(loss=self._aux_forward(*inputs))
- else:
- return dict(loss=super(MixSoftmaxCrossEntropyOHEMLoss, self).forward(*inputs))
-
-
- def get_segmentation_loss(model, use_ohem=False, **kwargs):
- if use_ohem:
- return MixSoftmaxCrossEntropyOHEMLoss(**kwargs)
-
- model = model.lower()
- if model == 'encnet':
- return EncNetLoss(**kwargs)
- elif model == 'icnet':
- return ICNetLoss(nclass=4, **kwargs)
- else:
- return MixSoftmaxCrossEntropyLoss(**kwargs)
|