No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

37 líneas
1.3KB

  1. from models_725.segWaterBuilding import SegModel
  2. from PIL import Image
  3. import numpy as np
  4. import cv2
  5. import os
  6. from cv2 import getTickCount, getTickFrequency
  7. import time
  8. def predict_lunkuo(impth=None):
  9. pred, probs = segmodel.eval(image=impth)#####
  10. preds_squeeze = pred.squeeze(0)
  11. preds_squeeze[preds_squeeze != 0] = 255
  12. preds_squeeze = np.array(preds_squeeze.cpu())
  13. preds_squeeze = np.uint8(preds_squeeze)
  14. _, binary = cv2.threshold(preds_squeeze,220,255,cv2.THRESH_BINARY)
  15. contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
  16. img_n = cv2.cvtColor(impth,cv2.COLOR_RGB2BGR)
  17. img2 = cv2.drawContours(img_n,contours,-1,(0,0,255),8)
  18. return img2
  19. if __name__ == '__main__':
  20. impth = 'images/examples'
  21. outpth= 'images/results'
  22. folders = os.listdir(impth)
  23. #segmodel = SegModel(device='cuda:0')
  24. segmodel = SegModel(device='cpu')
  25. for i in range(len(folders)):
  26. imgpath = os.path.join(impth, folders[i])
  27. time00 = time.time()
  28. img = Image.open(imgpath).convert('RGB')
  29. img = np.array(img)
  30. time11 = time.time()
  31. img=predict_lunkuo(impth=img)
  32. cv2.imwrite( os.path.join( outpth,folders[i] ) ,img )
  33. print('----all_process', (time.time() - time11) * 1000)