選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

37 行
1.3KB

  1. from models_725.segWaterBuilding import SegModel
  2. from PIL import Image
  3. import numpy as np
  4. import cv2
  5. import os
  6. from cv2 import getTickCount, getTickFrequency
  7. import time
  8. def predict_lunkuo(impth=None):
  9. pred, probs = segmodel.eval(image=impth)#####
  10. preds_squeeze = pred.squeeze(0)
  11. preds_squeeze[preds_squeeze != 0] = 255
  12. preds_squeeze = np.array(preds_squeeze.cpu())
  13. preds_squeeze = np.uint8(preds_squeeze)
  14. _, binary = cv2.threshold(preds_squeeze,220,255,cv2.THRESH_BINARY)
  15. contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
  16. img_n = cv2.cvtColor(impth,cv2.COLOR_RGB2BGR)
  17. img2 = cv2.drawContours(img_n,contours,-1,(0,0,255),8)
  18. return img2
  19. if __name__ == '__main__':
  20. impth = 'images/examples'
  21. outpth= 'images/results'
  22. folders = os.listdir(impth)
  23. #segmodel = SegModel(device='cuda:0')
  24. segmodel = SegModel(device='cpu')
  25. for i in range(len(folders)):
  26. imgpath = os.path.join(impth, folders[i])
  27. time00 = time.time()
  28. img = Image.open(imgpath).convert('RGB')
  29. img = np.array(img)
  30. time11 = time.time()
  31. img=predict_lunkuo(impth=img)
  32. cv2.imwrite( os.path.join( outpth,folders[i] ) ,img )
  33. print('----all_process', (time.time() - time11) * 1000)